enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    In information theory, the entropy of a random variable quantifies the average level of uncertainty or information associated with the variable's potential states or possible outcomes. This measures the expected amount of information needed to describe the state of the variable, considering the distribution of probabilities across all potential ...

  3. Entropy in thermodynamics and information theory - Wikipedia

    en.wikipedia.org/wiki/Entropy_in_thermodynamics...

    The defining expression for entropy in the theory of information established by Claude E. Shannon in 1948 is of the form: where is the probability of the message taken from the message space M, and b is the base of the logarithm used. Common values of b are 2, Euler's number e, and 10, and the unit of entropy is shannon (or bit) for b = 2, nat ...

  4. Differential entropy - Wikipedia

    en.wikipedia.org/wiki/Differential_entropy

    e. Differential entropy (also referred to as continuous entropy) is a concept in information theory that began as an attempt by Claude Shannon to extend the idea of (Shannon) entropy (a measure of average surprisal) of a random variable, to continuous probability distributions. Unfortunately, Shannon did not derive this formula, and rather just ...

  5. Shannon's source coding theorem - Wikipedia

    en.wikipedia.org/wiki/Shannon's_source_coding...

    In information theory, Shannon's source coding theorem (or noiseless coding theorem) establishes the statistical limits to possible data compression for data whose source is an independent identically-distributed random variable, and the operational meaning of the Shannon entropy. Named after Claude Shannon, the source coding theorem shows that ...

  6. Information theory - Wikipedia

    en.wikipedia.org/wiki/Information_theory

    In this context, either an information-theoretical measure, such as functional clusters (Gerald Edelman and Giulio Tononi's functional clustering model and dynamic core hypothesis (DCH) [47]) or effective information (Tononi's integrated information theory (IIT) of consciousness [48] [49] [50]), is defined (on the basis of a reentrant process ...

  7. Tsallis entropy - Wikipedia

    en.wikipedia.org/wiki/Tsallis_entropy

    Definition. Given a discrete set of probabilities with the condition , and any real number, the Tsallis entropy is defined as. where is a real parameter sometimes called entropic-index and a positive constant. In the limit as , the usual Boltzmann–Gibbs entropy is recovered, namely.

  8. Conditional entropy - Wikipedia

    en.wikipedia.org/wiki/Conditional_entropy

    The violet is the mutual information . In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable given that the value of another random variable is known. Here, information is measured in shannons, nats, or hartleys. The entropy of conditioned on is written as .

  9. Entropy (journal) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(journal)

    Entropy. (journal) Entropy is a monthly open access scientific journal covering research on all aspects of entropy and information theory. It was established in 1999 and is published by MDPI. The journal occasionally publishes special issues compiled by guest editors. [1] The editor-in-chief is Kevin H. Knuth (University at Albany, SUNY).