Search results
Results from the WOW.Com Content Network
Rotation matrix. In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix. rotates points in the xy plane counterclockwise through an angle θ about the origin of a two-dimensional Cartesian coordinate system.
Transformation matrix. In linear algebra, linear transformations can be represented by matrices. If is a linear transformation mapping to and is a column vector with entries, then for some matrix , called the transformation matrix of . [citation needed] Note that has rows and columns, whereas the transformation is from to .
Equivalently the last row can be said to have a fractional frequency of +1/8 and thus measure how much of the signal has a fractional frequency of −1/8. In this way, it could be said that the top rows of the matrix "measure" positive frequency content in the signal and the bottom rows measure negative frequency component in the signal.
In the theory of three-dimensional rotation, Rodrigues' rotation formula, named after Olinde Rodrigues, is an efficient algorithm for rotating a vector in space, given an axis and angle of rotation. By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO (3), the group of all rotation matrices ...
Jacobi method. In numerical linear algebra, the Jacobi method (a.k.a. the Jacobi iteration method) is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges.
The direct-quadrature-zero (DQZ or DQ0[1] or DQO, [2] sometimes lowercase) transformation or zero-direct-quadrature[3] (0DQ or ODQ, sometimes lowercase) transformation is a tensor that rotates the reference frame of a three-element vector or a three-by-three element matrix in an effort to simplify analysis. The DQZ transform is the product of ...
Kabsch algorithm. The Kabsch algorithm, also known as the Kabsch-Umeyama algorithm, [1] named after Wolfgang Kabsch and Shinji Umeyama, is a method for calculating the optimal rotation matrix that minimizes the RMSD (root mean squared deviation) between two paired sets of points. It is useful for point-set registration in computer graphics, and ...
Direct linear transformation (DLT) is an algorithm which solves a set of variables from a set of similarity relations: ∝ {\displaystyle \mathbf {x} _ {k}\propto \mathbf {A} \,\mathbf {y} _ {k}} for. where and are known vectors, denotes equality up to an unknown scalar multiplication, and is a matrix (or linear transformation) which contains ...