enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lorenz gauge condition - Wikipedia

    en.wikipedia.org/wiki/Lorenz_gauge_condition

    The Lorenz gauge hence contradicted Maxwell's original derivation of the EM wave equation by introducing a retardation effect to the Coulomb force and bringing it inside the EM wave equation alongside the time varying electric field, which was introduced in Lorenz's paper "On the identity of the vibrations of light with electrical currents".

  3. Quantization of the electromagnetic field - Wikipedia

    en.wikipedia.org/wiki/Quantization_of_the...

    Choosing the Coulomb gauge, for which ∇⋅A = 0, makes A into a transverse field. The Fourier expansion of the vector potential enclosed in a finite cubic box of volume V = L 3 is then

  4. Retarded potential - Wikipedia

    en.wikipedia.org/wiki/Retarded_potential

    Position vectors r and r′ used in the calculation. The starting point is Maxwell's equations in the potential formulation using the Lorenz gauge: =, = where φ(r, t) is the electric potential and A(r, t) is the magnetic vector potential, for an arbitrary source of charge density ρ(r, t) and current density J(r, t), and is the D'Alembert operator. [2]

  5. Classical electromagnetism and special relativity - Wikipedia

    en.wikipedia.org/wiki/Classical_electromagnetism...

    Using the 4-potential in the Lorenz gauge, an alternative manifestly-covariant formulation can be found in a single equation (a generalization of an equation due to Bernhard Riemann by Arnold Sommerfeld, known as the Riemann–Sommerfeld equation, [15] or the covariant form of the Maxwell equations [16]):

  6. Gauge fixing - Wikipedia

    en.wikipedia.org/wiki/Gauge_fixing

    The Coulomb gauge (also known as the transverse gauge) is used in quantum chemistry and condensed matter physics and is defined by the gauge condition (more precisely, gauge fixing condition) (,) =. It is particularly useful for "semi-classical" calculations in quantum mechanics, in which the vector potential is quantized but the Coulomb ...

  7. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    Two pairs of gauge transformed potentials (φ, A) and (φ′, A′) are called gauge equivalent, and the freedom to select any pair of potentials in its gauge equivalence class is called gauge freedom. Again by the Poincaré lemma (and under its assumptions), gauge freedom is the only source of indeterminacy, so the field formulation is ...

  8. Electromagnetic four-potential - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_four-potential

    There is gauge freedom in A in that of the three forms in this decomposition, only the coexact form has any effect on the electromagnetic tensor F = d A {\displaystyle F=dA} . Exact forms are closed, as are harmonic forms over an appropriate domain, so d d α = 0 {\displaystyle dd\alpha =0} and d γ = 0 {\displaystyle d\gamma =0} , always.

  9. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    In the differential form formulation on arbitrary space times, F = ⁠ 1 / 2 ⁠ F αβ ‍ dx α ∧ dx β is the electromagnetic tensor considered as a 2-form, A = A α dx α is the potential 1-form, = is the current 3-form, d is the exterior derivative, and is the Hodge star on forms defined (up to its orientation, i.e. its sign) by the ...