Search results
Results from the WOW.Com Content Network
Thorne (1994) relates that this approach to studying black holes was prompted by the realisation by Hanni, Ruffini, Wald and Cohen in the early 1970s that since an electrically charged pellet dropped into a black hole should still appear to a distant outsider to be remaining just outside the event horizon, if its image persists, its electrical fieldlines ought to persist too, and ought to ...
The Penrose process (also called Penrose mechanism) is theorised by Sir Roger Penrose as a means whereby energy can be extracted from a rotating black hole. [1] [2] [3] The process takes advantage of the ergosphere – a region of spacetime around the black hole dragged by its rotation faster than the speed of light, meaning that from the point of view of an outside observer any matter inside ...
The Blandford–Znajek process is a mechanism for the extraction of energy from a rotating black hole, [1] [2] introduced by Roger Blandford and Roman Znajek in 1977. [3] This mechanism is the most preferred description of how astrophysical jets are formed around spinning supermassive black holes.
In physics, black hole thermodynamics [1] is the area of study that seeks to reconcile the laws of thermodynamics with the existence of black hole event horizons.As the study of the statistical mechanics of black-body radiation led to the development of the theory of quantum mechanics, the effort to understand the statistical mechanics of black holes has had a deep impact upon the ...
A black-hole approach illusion can happen during a final approach at night (with no stars or moonlight) over water or unlit terrain to a lighted runway, in which the horizon is not visible. [4] As the name suggests, it involves an approach to landing during the night where there is nothing to see between the aircraft and the intended runway ...
The no-hair theorem states that all stationary black hole solutions of the Einstein–Maxwell equations of gravitation and electromagnetism in general relativity can be completely characterized by only three independent externally observable classical parameters: mass, angular momentum, and electric charge.
A black hole with modest angular momentum has an ergosphere with a shape approximated by an oblate spheroid, while faster spins produce a more pumpkin-shaped ergosphere. The equatorial (maximal) radius of an ergosphere is the Schwarzschild radius, the radius of a non-rotating black hole. The polar (minimal) radius is also the polar (minimal ...
Yes, because it is testable. The theory predicts that Nature's parameters should be optimized for black hole production. Hence if one changes a coupling constant or a particle mass, the number of black holes should decrease. Theorists can analyze the effects of such a variation through calculations and computer simulations.