Search results
Results from the WOW.Com Content Network
In fluid mechanics, a two-dimensional flow is a form of fluid flow where the flow velocity at every point is parallel to a fixed plane. The velocity at any point on a ...
Reaction–diffusion systems are naturally applied in chemistry. However, the system can also describe dynamical processes of non-chemical nature. Examples are found in biology, geology and physics (neutron diffusion theory) and ecology. Mathematically, reaction–diffusion systems take the form of semi-linear parabolic partial differential ...
Assume for a two-dimensional turbulent flow that one was able to locate a specific point in the fluid and measure the actual flow velocity v = (v x,v y) of every particle that passed through that point at any given time. Then one would find the actual flow velocity fluctuating about a mean value:
The two-dimensional (or Lagrange) stream function, introduced by Joseph Louis Lagrange in 1781, [1] is defined for incompressible (divergence-free), two-dimensional flows. The Stokes stream function , named after George Gabriel Stokes , [ 2 ] is defined for incompressible, three-dimensional flows with axisymmetry .
A two-dimensional flow that, at the highlighted point, has only a strain rate component, with no mean velocity or rotational component. In continuum mechanics, the strain-rate tensor or rate-of-strain tensor is a physical quantity that describes the rate of change of the strain (i.e., the relative deformation) of a material in the neighborhood of a certain point, at a certain moment of time.
Flow cytometry (FC) is a technique used to detect and measure the physical and chemical characteristics of a population of cells or particles. [1] [2] [3] [4]In this process, a sample containing cells or particles is suspended in a fluid and injected into the flow cytometer instrument.
In fluid dynamics, the lift per unit span (L') acting on a body in a two-dimensional flow field is directly proportional to the circulation, i.e. it can be expressed as the product of the circulation Γ about the body, the fluid density , and the speed of the body relative to the free-stream : ′ =
This is true in the case of two-dimensional potential flow (i.e. two-dimensional zero viscosity flow), in which case the flowfield can be modeled as a complex-valued field on the complex plane. Vorticity is useful for understanding how ideal potential flow solutions can be perturbed to model real flows.