enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quadratic form - Wikipedia

    en.wikipedia.org/wiki/Quadratic_form

    The discriminant of a quadratic form, concretely the class of the determinant of a representing matrix in K / (K ×) 2 (up to non-zero squares) can also be defined, and for a real quadratic form is a cruder invariant than signature, taking values of only "positive, zero, or negative".

  3. Linear complementarity problem - Wikipedia

    en.wikipedia.org/wiki/Linear_complementarity_problem

    Given a real matrix M and vector q, the linear complementarity problem LCP(q, M) seeks vectors z and w which satisfy the following constraints: w , z ⩾ 0 , {\displaystyle w,z\geqslant 0,} (that is, each component of these two vectors is non-negative)

  4. Quadratic form (statistics) - Wikipedia

    en.wikipedia.org/wiki/Quadratic_form_(statistics)

    Since the quadratic form is a scalar quantity, = ⁡ (). Next, by the cyclic property of the trace operator, ⁡ [⁡ ()] = ⁡ [⁡ ()]. Since the trace operator is a linear combination of the components of the matrix, it therefore follows from the linearity of the expectation operator that

  5. Matrix congruence - Wikipedia

    en.wikipedia.org/wiki/Matrix_congruence

    Matrix congruence is an equivalence relation. Matrix congruence arises when considering the effect of change of basis on the Gram matrix attached to a bilinear form or quadratic form on a finite-dimensional vector space : two matrices are congruent if and only if they represent the same bilinear form with respect to different bases .

  6. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    The above matrix equations explain the behavior of polynomial regression well. However, to physically implement polynomial regression for a set of xy point pairs, more detail is useful. The below matrix equations for polynomial coefficients are expanded from regression theory without derivation and easily implemented. [6] [7] [8]

  7. Covariance matrix - Wikipedia

    en.wikipedia.org/wiki/Covariance_matrix

    Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...

  8. Quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Quadratic_programming

    Quadratic programming (QP) is the process of solving certain mathematical optimization problems involving quadratic functions. Specifically, one seeks to optimize (minimize or maximize) a multivariate quadratic function subject to linear constraints on the variables.

  9. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.