enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 2-Bromopyridine - Wikipedia

    en.wikipedia.org/wiki/2-Bromopyridine

    2-Bromopyridine reacts with butyllithium to give 2-lithiopyridine, [2] which is a versatile reagent. [3] Pyrithione can be prepared in a two-step synthesis from 2-bromopyridine by oxidation to the N-oxide with a suitable peracid followed by substitution using either sodium dithionite or sodium sulfide with sodium hydroxide to introduce the thiol functional group.

  3. Protodeboronation - Wikipedia

    en.wikipedia.org/wiki/Protodeboronation

    Protodeboronation is a well-known undesired side reaction, and frequently associated with metal-catalysed coupling reactions that utilise boronic acids (see Suzuki reaction). [1] For a given boronic acid, the propensity to undergo protodeboronation is highly variable and dependent on various factors, such as the reaction conditions employed and ...

  4. Borylation - Wikipedia

    en.wikipedia.org/wiki/Borylation

    The boron atom of a boronic ester or acid is sp 2 hybridized possessing a vacant p orbital, enabling these groups to act as Lewis acids. The C–B bond of boronic acids and esters are slightly longer than typical C–C single bonds with a range of 1.55-1.59 Å.

  5. Organoboron chemistry - Wikipedia

    en.wikipedia.org/wiki/Organoboron_chemistry

    Compounds of the type BR n (OR) 3-n are called borinic esters (n = 2), boronic esters (n = 1), and borates (n = 0). Boronic acids are key to the Suzuki reaction. Trimethyl borate, debatably not an organoboron compound, is an intermediate in sodium borohydride production.

  6. Tetrahydroxydiboron - Wikipedia

    en.wikipedia.org/wiki/Tetrahydroxydiboron

    The reaction of boron trichloride with alcohols was reported in 1931, and was used to prepare dimethoxyboron chloride, B(OCH 3) 2 Cl. [3] Egon Wiberg and Wilhelm Ruschmann used it to prepare tetrahydroxydiboron by first introducing the boron–boron bond by reduction with sodium and then hydrolysing the resulting tetramethoxydiboron, B 2 (OCH 3) 4, to produce what they termed sub-boric acid. [4]

  7. Sodium thiosulfate - Wikipedia

    en.wikipedia.org/wiki/Sodium_thiosulfate

    The relevant reaction is akin to the iodine reaction: thiosulfate reduces the hypochlorite (the active ingredient in bleach) and in so doing becomes oxidized to sulfate. The complete reaction is: 4 NaClO + Na 2 S 2 O 3 + 2 NaOH → 4 NaCl + 2 Na 2 SO 4 + H 2 O. Similarly, sodium thiosulfate reacts with bromine, removing the free bromine from ...

  8. Boronic acid - Wikipedia

    en.wikipedia.org/wiki/Boronic_acid

    The general structure of a boronic acid, where R is a substituent. A boronic acid is an organic compound related to boric acid (B(OH) 3) in which one of the three hydroxyl groups (−OH) is replaced by an alkyl or aryl group (represented by R in the general formula R−B(OH) 2). [1]

  9. Pyrithione - Wikipedia

    en.wikipedia.org/wiki/Pyrithione

    Pyrithione is the common name of an organosulfur compound with molecular formula C 5 H 5 NOS, chosen as an abbreviation of pyridinethione, and found in the Persian shallot. [4] It exists as a pair of tautomers, the major form being the thione 1-hydroxy-2(1H)-pyridinethione and the minor form being the thiol 2-mercaptopyridine N-oxide; it crystallises in the thione form. [5]