Search results
Results from the WOW.Com Content Network
argon-ion lasers at 458 and 488 nm [5] Lasers emitting wavelengths below 445 nm appear violet, but are nonetheless also called blue lasers. Violet light's 405 nm short wavelength, on the visible spectrum, causes fluorescence in some chemicals, like radiation in the ultraviolet ("black light") spectrum (wavelengths less than 400 nm).
416 nm, 530.9 nm, 568.2 nm, 647.1 nm, 676.4 nm, 752.5 nm, 799.3 nm Electrical discharge Scientific research, mixed with argon to create "white-light" lasers, light shows. Xenon ion laser: Many lines throughout visible spectrum extending into the UV and IR: Electrical discharge Scientific research. Nitrogen laser: 337.1 nm Electrical discharge
Blue light, a type of high-energy light, is part of the visible light spectrum. High-energy visible light (HEV light) is short-wave light in the violet/blue band from 400 to 450 nm in the visible spectrum, which has a number of purported negative biological effects, namely on circadian rhythm and retinal health (blue-light hazard), which can lead to age-related macular degeneration.
Red (635 nm), blueish violet (445 nm), and green (520 nm) laser pointers. A laser pointer or laser pen is a (typically battery-powered) handheld device that uses a laser diode to emit a narrow low-power visible laser beam (i.e. coherent light) to highlight something of interest with a small bright colored spot.
300 nm – greatest particle size that can fit through a HEPA (high efficiency particulate air) filter (N100 removes up to 99.97% at 300 nm, N95 removes up to 95% at 300 nm) [83] 300–400 nm – near ultraviolet wavelength; 400–420 nm – wavelength of violet light (see Color and Visible spectrum) 420–440 nm – wavelength of indigo light
The Faraday effect is chromatic (i.e. it depends on wavelength), and therefore the Verdet constant is quite a strong function of wavelength. [ 5 ] [ 6 ] At 632.8 nm , the Verdet constant for TGG is reported to be −134 rad /( T ·m) , whereas at 1064 nm it falls to −40 rad/(T·m) . [ 7 ]
From the early 1960s through the mid-1980s, Hg lamps had been used in lithography for their spectral lines at 436 nm ("g-line"), 405 nm ("h-line") and 365 nm ("i-line"). However, with the semiconductor industry's need for both higher resolution (to produce denser and faster chips) and higher throughput (for lower costs), lamp-based lithography ...
The dashed orange line is for a 53 year old eye, and dotted for a 75 year old eye, indicating the effect of lens yellowing.) Before reaching the retina, light must first transmit through the cornea and lens. UVB light (< 315 nm) is filtered mostly by the cornea, and UVA light (315–400 nm) is filtered mostly by the lens. [20]