Ads
related to: periodic motion problems with solutions worksheet pdf printable forms
Search results
Results from the WOW.Com Content Network
Floquet theory shows stability in Hill differential equation (introduced by George William Hill) approximating the motion of the moon as a harmonic oscillator in a periodic gravitational field. Bond softening and bond hardening in intense laser fields can be described in terms of solutions obtained from the Floquet theorem.
A periodic motion is a closed curve in phase space. That is, for some period, ′ = (,), = (). The textbook example of a periodic motion is the undamped pendulum.. If the phase space is periodic in one or more coordinates, say () = (+), with a vector [clarification needed], then there is a second kind of periodic motions defined by
Hill's equation is an important example in the understanding of periodic differential equations. Depending on the exact shape of f ( t ) {\displaystyle f(t)} , solutions may stay bounded for all time, or the amplitude of the oscillations in solutions may grow exponentially. [ 3 ]
In dynamical problems with periodically varying forces, the equation of motion sometimes takes the form of Mathieu's equation. In such cases, knowledge of the general properties of Mathieu's equation— particularly with regard to stability of the solutions—can be essential for understanding qualitative features of the physical dynamics. [ 41 ]
Periodic motion is motion in which the position(s) of the system are expressible as periodic functions, all with the same period. For a function on the real numbers or on the integers , that means that the entire graph can be formed from copies of one particular portion, repeated at regular intervals.
Thus simple harmonic motion is a type of periodic motion. If energy is lost in the system, then the mass exhibits damped oscillation. Note if the real space and phase space plot are not co-linear, the phase space motion becomes elliptical. The area enclosed depends on the amplitude and the maximum momentum.
While periodic travelling waves have been known as solutions of the wave equation since the 18th century, their study in nonlinear systems began in the 1970s. A key early research paper was that of Nancy Kopell and Lou Howard [1] which proved several fundamental results on periodic travelling waves in reaction–diffusion equations.
Period doubling in the Kuramoto–Sivashinsky equation with periodic boundary conditions. The curves depict solutions of the Kuramoto–Sivashinsky equation projected onto the energy phase plane (E, dE/dt), where E is the L 2-norm of the solution. For ν = 0.056, there exists a periodic orbit with period T ≈ 1.1759.
Ads
related to: periodic motion problems with solutions worksheet pdf printable formsteacherspayteachers.com has been visited by 100K+ users in the past month