Search results
Results from the WOW.Com Content Network
A crucible and tongs, on a green mat. The ash content of a sample is a measure of the amount of inorganic noncombustible material it contains. The residues after a sample is completely burnt - in contrast to the ash remaining after incomplete combustion - typically consist of oxides of the inorganic elements present in the original sample.
An arsinide, arsanide, dihydridoarsenate(1−) or arsanyl compound is a chemical derivative of arsine, where one hydrogen atom is replaced with a metal or cation.The arsinide ion has formula AsH − 2.
Ash is the solid remnants of fires. [1] Specifically, ash refers to all non- aqueous , non- gaseous residues that remain after something burns . In analytical chemistry , to analyse the mineral and metal content of chemical samples , ash is the non- gaseous , non- liquid residue after complete combustion.
For example, the loss on ignition of fly ash is composed of contaminants and unburnt fuel. In pyroprocessing industries such as lime,calcined bauxite, refractories or cement manufacture, the loss on ignition of the raw material is roughly equivalent to the mass loss it will experience in a kiln. Likewise, in minerals, the loss on ignition ...
The behaviour of the coal's ash residue at high temperature is a critical factor in selecting coals for steam power generation. Most furnaces are designed to remove ash as a powdery residue. Coal which has ash that fuses into a hard glassy slag known as clinker is usually unsatisfactory in furnaces as it requires cleaning. However, furnaces can ...
Wood ash is the powdery residue remaining after the combustion of wood, such as burning wood in a fireplace, bonfire, or an industrial power plant. It is largely composed of calcium compounds, along with other non-combustible trace elements present in the wood, and has been used for many purposes throughout history.
It can be measured for any fluid system with no dilution or other sample preparation. This is a big advantage of this method. Calculation of particle size distribution is based on theoretical models that are well verified for up to 50% by volume of dispersed particles on micron and nanometer scales.
Since the heat of combustion of these elements is known, the heating value can be calculated using Dulong's Formula: HHV [kJ/g]= 33.87m C + 122.3(m H - m O ÷ 8) + 9.4m S where m C , m H , m O , m N , and m S are the contents of carbon, hydrogen, oxygen, nitrogen, and sulfur on any (wet, dry or ash free) basis, respectively.