Search results
Results from the WOW.Com Content Network
The most common problem being solved is the 0-1 knapsack problem, which restricts the number of copies of each kind of item to zero or one. Given a set of items numbered from 1 up to , each with a weight and a value , along with a maximum weight capacity ,
The knapsack problem is one of the most studied problems in combinatorial optimization, with many real-life applications. For this reason, many special cases and generalizations have been examined. For this reason, many special cases and generalizations have been examined.
The quadratic knapsack problem (QKP), first introduced in 19th century, [1] is an extension of knapsack problem that allows for quadratic terms in the objective function: Given a set of items, each with a weight, a value, and an extra profit that can be earned if two items are selected, determine the number of items to include in a collection without exceeding capacity of the knapsack, so as ...
The following is a dynamic programming implementation (with Python 3) which uses a matrix to keep track of the optimal solutions to sub-problems, and returns the minimum number of coins, or "Infinity" if there is no way to make change with the coins given. A second matrix may be used to obtain the set of coins for the optimal solution.
Note: consider In the 2-weighted knapsack problem, where each item has two weights and a value, and the goal is to maximize the value such that the sum of squares of the total weights is at most the knapsack capacity: (,) + (,). We could solve it using a similar DP, where each state is (current weight 1, current weight 2, value).
In theoretical computer science, the continuous knapsack problem (also known as the fractional knapsack problem) is an algorithmic problem in combinatorial optimization in which the goal is to fill a container (the "knapsack") with fractional amounts of different materials chosen to maximize the value of the selected materials.
Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011. In 2020, the company was acquired by American educational technology website Course Hero. [3] [4]
For example, bin packing is strongly NP-complete while the 0-1 Knapsack problem is only weakly NP-complete. Thus the version of bin packing where the object and bin sizes are integers bounded by a polynomial remains NP-complete, while the corresponding version of the Knapsack problem can be solved in pseudo-polynomial time by dynamic programming.