enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regular polytope - Wikipedia

    en.wikipedia.org/wiki/Regular_polytope

    In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry.In particular, all its elements or j-faces (for all 0 ≤ j ≤ n, where n is the dimension of the polytope) — cells, faces and so on — are also transitive on the symmetries of the polytope, and are themselves regular polytopes of dimension j≤ n.

  3. List of two-dimensional geometric shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_two-dimensional...

    This is a list of two-dimensional geometric shapes in Euclidean and other geometries. For mathematical objects in more dimensions, see list of mathematical shapes. For a broader scope, see list of shapes.

  4. Polytope - Wikipedia

    en.wikipedia.org/wiki/Polytope

    A polygon is a 2-dimensional polytope. Polygons can be characterised according to various criteria. Some examples are: open (excluding its boundary), bounding circuit only (ignoring its interior), closed (including both its boundary and its interior), and self-intersecting with varying densities of different regions.

  5. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    The n dimensional real projective space is the quotient of the n sphere by the antipodal map. It follows that its Euler characteristic is exactly half that of the corresponding sphere – either 0 or 1. The n dimensional torus is the product space of n circles. Its Euler characteristic is 0, by the product property.

  6. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.

  7. Apeirogon - Wikipedia

    en.wikipedia.org/wiki/Apeirogon

    Given a point A 0 in a Euclidean space and a translation S, define the point A i to be the point obtained from i applications of the translation S to A 0, so A i = S i (A 0).The set of vertices A i with i any integer, together with edges connecting adjacent vertices, is a sequence of equal-length segments of a line, and is called the regular apeirogon as defined by H. S. M. Coxeter.

  8. Archimedean solid - Wikipedia

    en.wikipedia.org/wiki/Archimedean_solid

    The Archimedean solids are a set of thirteen convex polyhedra whose faces are regular polygons, but not all alike, and whose vertices are all symmetric to each other. The solids were named after Archimedes, although he did not claim credit for them. They belong to the class of uniform polyhedra, the polyhedra with regular faces and symmetric ...

  9. Cuboctahedron - Wikipedia

    en.wikipedia.org/wiki/Cuboctahedron

    The cuboctahedron has 1 transitivity class of 12 vertices, 1 class of 24 edges, and 2 classes of faces: 8 triangular and 6 square; each element in a matrix's diagonal. [17] The 24 edges can be seen in 4 central hexagons.

  1. Related searches two dimensional shapes with vertices and faces pdf book class 5 maths area and its boundary

    two dimensional shapestwo dimensional triangles
    2 dimensional geometric shapes list