enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Trirectangular tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Trirectangular_tetrahedron

    A trirectangular tetrahedron with its base shown in green and its apex as a solid black disk. It can be constructed by a coordinate octant and a plane crossing all 3 axes away from the origin (x>0; y>0; z>0) and x/a+y/b+z/c<1. In geometry, a trirectangular tetrahedron is a tetrahedron where all three face angles at one vertex are right angles.

  3. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    The 3-orthoscheme is a tetrahedron having two right angles at each of two vertices, so another name for it is birectangular tetrahedron. It is also called a quadrirectangular tetrahedron because it contains four right angles. [12]

  4. Truncated tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Truncated_tetrahedron

    Given the edge length .The surface area of a truncated tetrahedron is the sum of 4 regular hexagons and 4 equilateral triangles' area, and its volume is: [2] =, =.. The dihedral angle of a truncated tetrahedron between triangle-to-hexagon is approximately 109.47°, and that between adjacent hexagonal faces is approximately 70.53°.

  5. Volume of an n-ball - Wikipedia

    en.wikipedia.org/wiki/Volume_of_an_n-ball

    The volume of a n-ball is the Lebesgue measure of this ball, which generalizes to any dimension the usual volume of a ball in 3-dimensional space. The volume of a n -ball of radius R is R n V n , {\displaystyle R^{n}V_{n},} where V n {\displaystyle V_{n}} is the volume of the unit n -ball , the n -ball of radius 1 .

  6. Reeve tetrahedra - Wikipedia

    en.wikipedia.org/wiki/Reeve_tetrahedra

    No other lattice points lie on the surface or in the interior of the tetrahedron. The volume of the Reeve tetrahedron with vertex (1, 1, r) is r/6. In 1957 Reeve used this tetrahedron to show that there exist tetrahedra with four lattice points as vertices, and containing no other lattice points, but with arbitrarily large volume. [2]

  7. Dehn invariant - Wikipedia

    en.wikipedia.org/wiki/Dehn_invariant

    Sydler (1965) extended this result by proving that the volume and the Dehn invariant are the only invariants for this problem. If P and Q both have the same volume and the same Dehn invariant, it is always possible to dissect one into the other. [12] [13] The Dehn invariant also constrains the ability of a polyhedron to tile space. Every space ...

  8. Ideal polyhedron - Wikipedia

    en.wikipedia.org/wiki/Ideal_polyhedron

    The ideal tetrahedron, cube, octahedron, and dodecahedron form respectively the order-6 tetrahedral honeycomb, order-6 cubic honeycomb, order-4 octahedral honeycomb, and order-6 dodecahedral honeycomb; here the order refers to the number of cells meeting at each edge. However, the ideal icosahedron does not tile space in the same way.

  9. Reuleaux tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Reuleaux_tetrahedron

    The Reuleaux tetrahedron is the intersection of four balls of radius s centered at the vertices of a regular tetrahedron with side length s. [1] The spherical surface of the ball centered on each vertex passes through the other three vertices, which also form vertices of the Reuleaux tetrahedron.