enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Graph homomorphism problem [3]: GT52 Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs, forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloring the complement of the given graph. A related problem is to find a partition that is optimal terms ...

  3. NP-completeness - Wikipedia

    en.wikipedia.org/wiki/NP-completeness

    An interesting example is the graph isomorphism problem, the graph theory problem of determining whether a graph isomorphism exists between two graphs. Two graphs are isomorphic if one can be transformed into the other simply by renaming vertices. Consider these two problems: Graph Isomorphism: Is graph G 1 isomorphic to graph G 2?

  4. Karp's 21 NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/Karp's_21_NP-complete_problems

    In computational complexity theory, Karp's 21 NP-complete problems are a set of computational problems which are NP-complete.In his 1972 paper, "Reducibility Among Combinatorial Problems", [1] Richard Karp used Stephen Cook's 1971 theorem that the boolean satisfiability problem is NP-complete [2] (also called the Cook-Levin theorem) to show that there is a polynomial time many-one reduction ...

  5. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    The graph shows the running time vs. problem size for a knapsack problem of a state-of-the-art, specialized algorithm. The quadratic fit suggests that the algorithmic complexity of the problem is O((log(n)) 2). [24] All of the above discussion has assumed that P means "easy" and "not in P" means "difficult", an assumption known as Cobham's ...

  6. Travelling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Travelling_salesman_problem

    For example, the minimum spanning tree of the graph associated with an instance of the Euclidean TSP is a Euclidean minimum spanning tree, and so can be computed in expected O(n log n) time for n points (considerably less than the number of edges). This enables the simple 2-approximation algorithm for TSP with triangle inequality above to ...

  7. NP (complexity) - Wikipedia

    en.wikipedia.org/wiki/NP_(complexity)

    The above example can be generalized for any decision problem. Given any instance I of problem Π {\displaystyle \Pi } and witness W, if there exists a verifier V so that given the ordered pair (I, W) as input, V returns "yes" in polynomial time if the witness proves that the answer is "yes" or "no" in polynomial time otherwise, then Π ...

  8. Set cover problem - Wikipedia

    en.wikipedia.org/wiki/Set_cover_problem

    Set covering is equivalent to the hitting set problem. That is seen by observing that an instance of set covering can be viewed as an arbitrary bipartite graph , with the universe represented by vertices on the left, the sets represented by vertices on the right, and edges representing the membership of elements to sets.

  9. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    Worked example of assigning tasks to an unequal number of workers using the Hungarian method. The assignment problem is a fundamental combinatorial optimization problem. In its most general form, the problem is as follows: The problem instance has a number of agents and a number of tasks.