Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /; French pronunciation:) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]
In statistics, the concept of the shape of a probability distribution arises in questions of finding an appropriate distribution to use to model the statistical properties of a population, given a sample from that population.
Frequency distribution: a table that displays the frequency of various outcomes in a sample. Relative frequency distribution: a frequency distribution where each value has been divided (normalized) by a number of outcomes in a sample (i.e. sample size). Categorical distribution: for discrete random variables with a finite set of values.
A visual depiction of a Poisson point process starting. In probability theory, statistics and related fields, a Poisson point process (also known as: Poisson random measure, Poisson random point field and Poisson point field) is a type of mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one ...
If X 1 is a normal (μ 1, σ 2 1) random variable and X 2 is a normal (μ 2, σ 2 2) random variable, then X 1 + X 2 is a normal (μ 1 + μ 2, σ 2 1 + σ 2 2) random variable. The sum of N chi-squared (1) random variables has a chi-squared distribution with N degrees of freedom. Other distributions are not closed under convolution, but their ...
In probability theory, the law of rare events or Poisson limit theorem states that the Poisson distribution may be used as an approximation to the binomial distribution, under certain conditions. [1] The theorem was named after Siméon Denis Poisson (1781–1840). A generalization of this theorem is Le Cam's theorem
A Poisson regression model is sometimes known as a log-linear model, especially when used to model contingency tables. Negative binomial regression is a popular generalization of Poisson regression because it loosens the highly restrictive assumption that the variance is equal to the mean made by the Poisson model. The traditional negative ...
The graph of a probability mass function. All the values of this function must be non-negative and sum up to 1. In probability and statistics, a probability mass function (sometimes called probability function or frequency function [1]) is a function that gives the probability that a discrete random variable is exactly equal to some value. [2]