Search results
Results from the WOW.Com Content Network
Geometrically, the derivative at a point is the slope of the tangent line to the graph of the function at that point, provided that the derivative exists and is defined at that point. For a real-valued function of a single real variable, the derivative of a function at a point generally determines the best linear approximation to the function ...
The ratio in the definition of the derivative is the slope of the line through two points on the graph of the function , specifically the points (, ()) and (+, (+)). As h {\displaystyle h} is made smaller, these points grow closer together, and the slope of this line approaches the limiting value, the slope of the tangent to the graph of ...
The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.
The derivative f′(x) of a curve at a point is the slope (rise over run) of the line tangent to that curve at that point. Differential calculus is the study of the definition, properties, and applications of the derivative of a function. The process of finding the derivative is called differentiation. Given a function and a point in the domain ...
A similar formulation of the higher-dimensional derivative is provided by the fundamental increment lemma found in single-variable calculus. If all the partial derivatives of a function exist in a neighborhood of a point x 0 and are continuous at the point x 0, then the function is differentiable at that point x 0.
If the derivative f vanishes at p, then f − f(p) belongs to the square I p 2 of this ideal. Hence the derivative of f at p may be captured by the equivalence class [f − f(p)] in the quotient space I p /I p 2, and the 1-jet of f (which encodes its value and its first derivative) is the equivalence class of f in the space of all functions ...
The definitions are applied to graphs as follows. If a function (a -cochain) is defined at the nodes of a graph: ,,, … then its exterior derivative (or the differential) is the difference, i.e., the following function defined on the edges of the graph (-cochain):
The derivatives in the table above are for when the range of the inverse secant is [,] and when the range of the inverse cosecant is [,]. It is common to additionally define an inverse tangent function with two arguments , arctan ( y , x ) . {\displaystyle \arctan(y,x).}