Search results
Results from the WOW.Com Content Network
In mathematics education, Finite Mathematics is a syllabus in college and university mathematics that is independent of calculus. A course in precalculus may be a prerequisite for Finite Mathematics.
Finitism is a philosophy of mathematics that accepts the existence only of finite mathematical objects. It is best understood in comparison to the mainstream philosophy of mathematics where infinite mathematical objects (e.g., infinite sets) are accepted as existing.
Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a bijection with the set of natural numbers) rather than "continuous" (analogously to continuous functions). Objects studied in discrete mathematics include integers, graphs, and statements in logic.
In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. Informally, a finite set is a set which one could in principle count and finish counting.
A finite projective space defined over such a finite field has q + 1 points on a line, so the two concepts of order coincide. Such a finite projective space is denoted by PG(n, q), where PG stands for projective geometry, n is the geometric dimension of the geometry and q is the size (order) of the finite field used to construct the geometry.
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. [a] Equivalently, a set is countable if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Countable additivity of a measure : The measure of a countable disjoint union is the same as the sum of all measures of each subset.. Let be a set and a σ-algebra over . A set function from to the extended real number line is called a measure if the following conditions hold: