Search results
Results from the WOW.Com Content Network
In algebra, a monic polynomial is a non-zero univariate polynomial (that is, a polynomial in a single variable) in which the leading coefficient (the nonzero coefficient of highest degree) is equal to 1.
The roots of the characteristic polynomial () are the eigenvalues of ().If there are n distinct eigenvalues , …,, then () is diagonalizable as () =, where D is the diagonal matrix and V is the Vandermonde matrix corresponding to the λ 's: = [], = [].
In linear algebra, the minimal polynomial μ A of an n × n matrix A over a field F is the monic polynomial P over F of least degree such that P(A) = 0. Any other polynomial Q with Q(A) = 0 is a (polynomial) multiple of μ A. The following three statements are equivalent: λ is a root of μ A, λ is a root of the characteristic polynomial χ A ...
The minimal polynomial f of α is unique.. To prove this, suppose that f and g are monic polynomials in J α of minimal degree n > 0. We have that r := f−g ∈ J α (because the latter is closed under addition/subtraction) and that m := deg(r) < n (because the polynomials are monic of the same degree).
Given a quadratic polynomial of the form + + it is possible to factor out the coefficient a, and then complete the square for the resulting monic polynomial. Example: + + = [+ +] = [(+) +] = (+) + = (+) + This process of factoring out the coefficient a can further be simplified by only factorising it out of the first 2 terms.
Graph of the polynomial function x 4 + x 3 – x 2 – 7x/4 – 1/2 (in green) together with the graph of its resolvent cubic R 4 (y) (in red). The roots of both polynomials are visible too. In algebra, a resolvent cubic is one of several distinct, although related, cubic polynomials defined from a monic polynomial of degree four:
Applied to the monic polynomial + = with all coefficients a k considered as free parameters, this means that every symmetric polynomial expression S(x 1,...,x n) in its roots can be expressed instead as a polynomial expression P(a 1,...,a n) in terms of its coefficients only, in other words without requiring knowledge of the roots.
In a similar way, If f and g are two polynomial arithmetic functions, one defines f * g, the Dirichlet convolution of f and g, by () = () = = () where the sum extends over all monic divisors d of m, or equivalently over all pairs (a, b) of monic polynomials whose product is m.