enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kanade–Lucas–Tomasi feature tracker - Wikipedia

    en.wikipedia.org/wiki/Kanade–Lucas–Tomasi...

    It is proposed mainly for the purpose of dealing with the problem that traditional image registration techniques are generally costly. KLT makes use of spatial intensity information to direct the search for the position that yields the best match. It is faster than traditional techniques for examining far fewer potential matches between the images.

  3. Face Recognition Vendor Test - Wikipedia

    en.wikipedia.org/wiki/Face_Recognition_Vendor_Test

    FRVT Ongoing now has roughly 200 face recognition algorithms and tests against at least six collections of photographs [5] with multiple photographs of more than 8 million people. The best algorithms for 1:1 verification gives False Non Match Rates of 0.0003 at False Match Rates of 0.0001 on high quality visa images. [6] Additional programs:

  4. Facial recognition system - Wikipedia

    en.wikipedia.org/wiki/Facial_recognition_system

    Some face recognition algorithms identify facial features by extracting landmarks, or features, from an image of the subject's face. For example, an algorithm may analyze the relative position, size, and/or shape of the eyes, nose, cheekbones, and jaw. [36] These features are then used to search for other images with matching features. [37]

  5. FaceNet - Wikipedia

    en.wikipedia.org/wiki/FaceNet

    The system uses a deep convolutional neural network to learn a mapping (also called an embedding) from a set of face images to a 128-dimensional Euclidean space, and assesses the similarity between faces based on the square of the Euclidean distance between the images' corresponding normalized vectors in the 128-dimensional Euclidean space.

  6. Viola–Jones object detection framework - Wikipedia

    en.wikipedia.org/wiki/Viola–Jones_object...

    The "frontal" requirement is non-negotiable, as there is no simple transformation on the image that can turn a face from a side view to a frontal view. However, one can train multiple Viola-Jones classifiers, one for each angle: one for frontal view, one for 3/4 view, one for profile view, a few more for the angles in-between them.

  7. Face detection - Wikipedia

    en.wikipedia.org/wiki/Face_detection

    Examples include upper torsos, pedestrians, and cars. Face detection simply answers two question, 1. are there any human faces in the collected images or video? 2. where is the face located? Face-detection algorithms focus on the detection of frontal human faces. It is analogous to image detection in which the image of a person is matched bit ...

  8. Object detection - Wikipedia

    en.wikipedia.org/wiki/Object_detection

    Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]

  9. DeepFace - Wikipedia

    en.wikipedia.org/wiki/DeepFace

    The input is an RGB image of the face, scaled to resolution , and the output is a real vector of dimension 4096, being the feature vector of the face image. In the 2014 paper, [ 13 ] an additional fully connected layer is added at the end to classify the face image into one of 4030 possible persons that the network had seen during training time.