Search results
Results from the WOW.Com Content Network
The other variance is a characteristic of a set of observations. When variance is calculated from observations, those observations are typically measured from a real-world system. If all possible observations of the system are present, then the calculated variance is called the population variance.
The Birnbaum–Saunders distribution, also known as the fatigue life distribution, is a probability distribution used extensively in reliability applications to model failure times. The chi distribution. The noncentral chi distribution; The chi-squared distribution, which is the sum of the squares of n independent Gaussian random variables.
Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered. On the other hand, when the variance is small, the data in the set is clustered.
An example of an observational study is one that explores the association between smoking and lung cancer. This type of study typically uses a survey to collect observations about the area of interest and then performs statistical analysis.
For example, suppose that the values x are realizations from different Poisson distributions: i.e. the distributions each have different mean values μ. Then, because for the Poisson distribution the variance is identical to the mean, the variance varies with the mean. However, if the simple variance-stabilizing transformation
where is a real k-dimensional column vector and | | is the determinant of , also known as the generalized variance. The equation above reduces to that of the univariate normal distribution if Σ {\displaystyle {\boldsymbol {\Sigma }}} is a 1 × 1 {\displaystyle 1\times 1} matrix (i.e., a single real number).
In probability theory and statistics, the Laplace distribution is a continuous probability distribution named after Pierre-Simon Laplace.It is also sometimes called the double exponential distribution, because it can be thought of as two exponential distributions (with an additional location parameter) spliced together along the abscissa, although the term is also sometimes used to refer to ...
This distribution for a = 0, b = 1 and c = 0.5—the mode (i.e., the peak) is exactly in the middle of the interval—corresponds to the distribution of the mean of two standard uniform variables, that is, the distribution of X = (X 1 + X 2) / 2, where X 1, X 2 are two independent random variables with standard uniform distribution in [0, 1]. [1]