enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Specific weight - Wikipedia

    en.wikipedia.org/wiki/Specific_weight

    The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...

  3. Mass versus weight - Wikipedia

    en.wikipedia.org/wiki/Mass_versus_weight

    Conventional mass is defined as follows: "For a mass at 20 °C, 'conventional mass' is the mass of a reference standard of density 8,000 kg/m 3 which it balances in air with a density of 1.2 kg/m 3." The effect is a small one, 150 ppm for stainless steel mass standards, but the appropriate corrections are made during the manufacture of all ...

  4. Orders of magnitude (mass) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(mass)

    An overview of ranges of mass. To help compare different orders of magnitude, the following lists describe various mass levels between 10 −67 kg and 10 52 kg. The least massive thing listed here is a graviton, and the most massive thing is the observable universe.

  5. Relative density - Wikipedia

    en.wikipedia.org/wiki/Relative_density

    If the relative density is exactly 1 then the densities are equal; that is, equal volumes of the two substances have the same mass. If the reference material is water, then a substance with a relative density (or specific gravity) less than 1 will float in water. For example, an ice cube, with a relative density of about 0.91, will float.

  6. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    In addition to Poynting, measurements were made by C. V. Boys (1895) [25] and Carl Braun (1897), [26] with compatible results suggesting G = 6.66(1) × 10 −11 m 3 ⋅kg1 ⋅s −2. The modern notation involving the constant G was introduced by Boys in 1894 [12] and becomes standard by the end of the 1890s, with values usually cited in the ...

  7. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [ 2 ] [ 3 ] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2 ), [ 4 ] depending on altitude , latitude , and ...

  8. International Prototype of the Kilogram - Wikipedia

    en.wikipedia.org/wiki/International_prototype_of...

    Here the newtons in the numerator and the denominator exactly cancel out when calculating the value of the ohm. Similarly: F = C/V = ⁠ A s / W/A ⁠ = ⁠ A 2 s 2 / J ⁠ = ⁠ μN s 2 / 10 k A N m ⁠ = ⁠ 10 −7 s 2 / k A m ⁠ Gy = J/kg = ⁠ kg m 2 /s 2 / kg ⁠ = m 2 /s 2; S = 1/Ω = ⁠ 10 −7 s / k A m ⁠ H = Ω s = 10 7 k A m

  9. Earth mass - Wikipedia

    en.wikipedia.org/wiki/Earth_mass

    Earth's density varies considerably, between less than 2700 kg/m 3 in the upper crust to as much as 13 000 kg/m 3 in the inner core. [13] The Earth's core accounts for 15% of Earth's volume but more than 30% of the mass, the mantle for 84% of the volume and close to 70% of the mass, while the crust accounts for less than 1% of the mass. [ 13 ]