Search results
Results from the WOW.Com Content Network
The unit circle can be specified as the level curve f(x, y) = 1 of the function f(x, y) = x 2 + y 2.Around point A, y can be expressed as a function y(x).In this example this function can be written explicitly as () =; in many cases no such explicit expression exists, but one can still refer to the implicit function y(x).
One can then prove that this smoothed sum is asymptotic to − + 1 / 12 + CN 2, where C is a constant that depends on f. The constant term of the asymptotic expansion does not depend on f: it is necessarily the same value given by analytic continuation, − + 1 / 12 . [1]
M 2, M 3 and M 4 Mycielski graphs Applying the Mycielskian repeatedly, starting with the one-edge graph, produces a sequence of graphs M i = μ( M i −1 ), sometimes called the Mycielski graphs. The first few graphs in this sequence are the graph M 2 = K 2 with two vertices connected by an edge, the cycle graph M 3 = C 5 , and the Grötzsch ...
By the implicit function theorem, each choice defines a function; for the first one, the (maximal) domain is the interval [−2, 2] and the image is [−1, 1]; for the second one, the domain is [−2, ∞) and the image is [1, ∞); for the last one, the domain is (−∞, 2] and the image is (−∞, −1]. As the three graphs together form a ...
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
To decide if a graph has a Hamiltonian path, one would have to check each possible path in the input graph G. There are n! different sequences of vertices that might be Hamiltonian paths in a given n-vertex graph (and are, in a complete graph), so a brute force search algorithm that tests all possible sequences would be very slow.
The vertex set of an n-vertex graph may be identified with the integers from 1 to n, and using such an identification a canonical form of a graph may also be described as a permutation of its vertices. Canonical forms of a graph are also called canonical labelings, [4] and graph canonization is also sometimes known as graph canonicalization.
Forbidden graph characterizations may be used in algorithms for testing whether a graph belongs to a given family. In many cases, it is possible to test in polynomial time whether a given graph contains any of the members of the obstruction set, and therefore whether it belongs to the family defined by that obstruction set.