enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    The semi-minor axis of an ellipse runs from the center of the ellipse (a point halfway between and on the line running between the foci) to the edge of the ellipse. The semi-minor axis is half of the minor axis. The minor axis is the longest line segment perpendicular to the major axis that connects two points on the ellipse's edge. The semi ...

  3. Elliptic coordinate system - Wikipedia

    en.wikipedia.org/wiki/Elliptic_coordinate_system

    The prolate spheroidal coordinates are produced by rotating the elliptic coordinates about the -axis, i.e., the axis connecting the foci, whereas the oblate spheroidal coordinates are produced by rotating the elliptic coordinates about the -axis, i.e., the axis separating the foci.

  4. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.

  5. Eccentric anomaly - Wikipedia

    en.wikipedia.org/wiki/Eccentric_anomaly

    The center of the ellipse is point O, and the focus is point F. Consider the ellipse with equation given by: + =, where a is the semi-major axis and b is the semi-minor axis. For a point on the ellipse, P = P(x, y), representing the position of an orbiting body in an elliptical orbit, the eccentric anomaly is the angle E in the

  6. Counting points on elliptic curves - Wikipedia

    en.wikipedia.org/wiki/Counting_points_on...

    An important aspect in the study of elliptic curves is devising effective ways of counting points on the curve.There have been several approaches to do so, and the algorithms devised have proved to be useful tools in the study of various fields such as number theory, and more recently in cryptography and Digital Signature Authentication (See elliptic curve cryptography and elliptic curve DSA).

  7. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.

  8. Elliptic curve - Wikipedia

    en.wikipedia.org/wiki/Elliptic_curve

    Graphs of curves y 2 = x 3 − x and y 2 = x 3 − x + 1. Although the formal definition of an elliptic curve requires some background in algebraic geometry, it is possible to describe some features of elliptic curves over the real numbers using only introductory algebra and geometry.

  9. Principal axis theorem - Wikipedia

    en.wikipedia.org/wiki/Principal_axis_theorem

    In geometry and linear algebra, a principal axis is a certain line in a Euclidean space associated with a ellipsoid or hyperboloid, generalizing the major and minor axes of an ellipse or hyperbola. The principal axis theorem states that the principal axes are perpendicular , and gives a constructive procedure for finding them.