Search results
Results from the WOW.Com Content Network
If G is a tree, replacing the queue of this breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [10]
If G is a tree, replacing the queue of the breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [7]
A depth-first search (DFS) is an algorithm for traversing a finite graph. DFS visits the child vertices before visiting the sibling vertices; that is, it traverses the depth of any particular path before exploring its breadth. A stack (often the program's call stack via recursion) is generally used when implementing the algorithm.
For infinite trees, simple algorithms often fail this. For example, given a binary tree of infinite depth, a depth-first search will go down one side (by convention the left side) of the tree, never visiting the rest, and indeed an in-order or post-order traversal will never visit any nodes, as it has not reached a leaf (and in fact never will ...
Unlike the latter however, optimisation algorithms do not necessarily require problems to be logic-solvable, giving them the potential to solve a wider range of problems. Algorithms designed for graph colouring are also known to perform well with Sudokus. [13] It is also possible to express a Sudoku as an integer linear programming problem ...
The breadth-first-search algorithm is a way to explore the vertices of a graph layer by layer. It is a basic algorithm in graph theory which can be used as a part of other graph algorithms. For instance, BFS is used by Dinic's algorithm to find maximum flow in a graph.
Randomized depth-first search on a hexagonal grid. The depth-first search algorithm of maze generation is frequently implemented using backtracking. This can be described with a following recursive routine: Given a current cell as a parameter; Mark the current cell as visited; While the current cell has any unvisited neighbour cells
Algorithms are often evaluated by their computational complexity, or maximum theoretical run time. Binary search functions, for example, have a maximum complexity of O(log n), or logarithmic time. In simple terms, the maximum number of operations needed to find the search target is a logarithmic function of the size of the search space.