Search results
Results from the WOW.Com Content Network
The cochlea is a portion of the inner ear that looks like a snail shell (cochlea is Greek for snail). [5] The cochlea receives sound in the form of vibrations, which cause the stereocilia to move. The stereocilia then convert these vibrations into nerve impulses which are taken up to the brain to be interpreted.
As acoustic sensors in mammals, stereocilia are lined up in the organ of Corti within the cochlea of the inner ear. In hearing, stereocilia transform the mechanical energy of sound waves into electrical signals for the hair cells, which ultimately leads to an excitation of the auditory nerve .
The stereocilia number from fifty to a hundred in each cell while being tightly packed together [2] and decrease in size the further away they are located from the kinocilium. [ 3 ] Mammalian cochlear hair cells are of two anatomically and functionally distinct types, known as outer, and inner hair cells.
These microscopic structures possess stereocilia and one kinocilium which are located within the gelatinous otolithic membrane. The membrane is further weighted with otoliths. Movement of the stereocilia and kinocilium enable the hair cells of the saccula and utricle to detect motion.
The cochlear duct (a.k.a. the scala media) is an endolymph filled cavity inside the cochlea, located between the tympanic duct and the vestibular duct, separated by the basilar membrane and the vestibular membrane (Reissner's membrane) respectively. The cochlear duct houses the organ of Corti. [1]
Stereocilia (or stereovilli or villi) are non-motile apical cell modifications. They are distinct from cilia and microvilli , but are closely related to microvilli. They form single "finger-like" projections that may be branched, with normal cell membrane characteristics.
The olivocochlear system is a component of the auditory system involved with the descending control of the cochlea.Its nerve fibres, the olivocochlear bundle (OCB), form part of the vestibulocochlear nerve (VIIIth cranial nerve, also known as the auditory-vestibular nerve), and project from the superior olivary complex in the brainstem to the cochlea.
The cochlea of the inner ear, a marvel of physiological engineering, acts as both a frequency analyzer and nonlinear acoustic amplifier. [2] The cochlea has over 32,000 hair cells . Outer hair cells primarily provide amplification of traveling waves that are induced by sound energy, while inner hair cells detect the motion of those waves and ...