enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nuclear binding energy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_binding_energy

    Nuclear binding energy in experimental physics is the minimum energy that is required to disassemble the nucleus of an atom into its constituent protons and neutrons, known collectively as nucleons. The binding energy for stable nuclei is always a positive number, as the nucleus must gain energy for the nucleons to move apart from each other.

  3. Binding energy - Wikipedia

    en.wikipedia.org/wiki/Binding_energy

    Nuclear binding energy Nuclear binding energy is the energy required to disassemble a nucleus into the free, unbound neutrons and protons it is composed of. It is the energy equivalent of the mass defect, the difference between the mass number of a nucleus and its measured mass.

  4. Valley of stability - Wikipedia

    en.wikipedia.org/wiki/Valley_of_stability

    The negative of binding energy per nucleon for nuclides with atomic mass number 125 plotted as a function of atomic number. The profile of binding energy across the valley of stability is roughly a parabola. Tellurium-125 (52 Te) is stable, while antimony-125 (51 Sb) is unstable to β− decay.

  5. Iron-56 - Wikipedia

    en.wikipedia.org/wiki/Iron-56

    Nuclear binding energy per nucleon of common isotopes; iron-56 labelled at the curve's crest. The rarer isotopes nickel-62 and iron-58, which both have higher binding energies, are not shown. Iron-56 (56 Fe) is the most common isotope of iron. About 91.754% of all iron is iron-56. Of all nuclides, iron-56 has the lowest mass per nucleon.

  6. List of equations in nuclear and particle physics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    E B = binding energy, a v = nuclear volume coefficient, a s = nuclear surface coefficient, a c = electrostatic interaction coefficient, a a = symmetry/asymmetry extent coefficient for the numbers of neutrons/protons,

  7. Iron peak - Wikipedia

    en.wikipedia.org/wiki/Iron_peak

    Light elements such as hydrogen release large amounts of energy (a big increase in binding energy) when combined to form heavier nuclei. Conversely, heavy elements such as uranium release energy when converted to lighter nuclei through alpha decay and nuclear fission. 56 28 Ni is the most thermodynamically favorable in the cores of high-mass stars.

  8. Island of stability - Wikipedia

    en.wikipedia.org/wiki/Island_of_stability

    Thus, the binding energy per nucleon reaches a local maximum and nuclei with filled shells are more stable than those without. [25] This theory of a nuclear shell model originates in the 1930s, but it was not until 1949 that German physicists Maria Goeppert Mayer and Johannes Hans Daniel Jensen et al. independently devised the correct ...

  9. List of elements by stability of isotopes - Wikipedia

    en.wikipedia.org/wiki/List_of_elements_by...

    An even number of protons or neutrons is more stable (higher binding energy) because of pairing effects, so even–even nuclides are much more stable than odd–odd. One effect is that there are few stable odd–odd nuclides: in fact only five are stable, with another four having half-lives longer than a billion years.