enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    Conversely, it is easily shown that if a, b, c, and d are constants and a, b, and c are not all zero, then the graph of the equation + + + =, is a plane having the vector n = (a, b, c) as a normal. [5] This familiar equation for a plane is called the general form of the equation of the plane or just the plane equation. [6]

  3. Normal (geometry) - Wikipedia

    en.wikipedia.org/wiki/Normal_(geometry)

    For a plane given by the general form plane equation + + + =, the vector = (,,) is a normal. For a plane whose equation is given in parametric form (,) = + +, where is a point on the plane and , are non-parallel vectors pointing along the plane, a normal to the plane is a vector normal to both and , which can be found as the cross product =.

  4. Analytic geometry - Wikipedia

    en.wikipedia.org/wiki/Analytic_geometry

    For example, in the two-dimensional case, the normal line to a curve at a given point is the line perpendicular to the tangent line to the curve at the point. In the three-dimensional case a surface normal , or simply normal , to a surface at a point P is a vector that is perpendicular to the tangent plane to that surface at P .

  5. Normal plane (geometry) - Wikipedia

    en.wikipedia.org/wiki/Normal_plane_(geometry)

    The normal section of a surface at a particular point is the curve produced by the intersection of that surface with a normal plane. [1] [2] [3] The curvature of the normal section is called the normal curvature. If the surface is bow or cylinder shaped, the maximum and the minimum of these curvatures are the principal curvatures.

  6. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    A space curve; the vectors T, N, B; and the osculating plane spanned by T and N. In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a differentiable curve in three-dimensional Euclidean space, or the geometric properties of the curve itself irrespective of any motion.

  7. Distance from a point to a line - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    The line with equation ax + by + c = 0 has slope -a/b, so any line perpendicular to it will have slope b/a (the negative reciprocal). Let (m, n) be the point of intersection of the line ax + by + c = 0 and the line perpendicular to it which passes through the point (x 0, y 0). The line through these two points is perpendicular to the original ...

  8. Hesse normal form - Wikipedia

    en.wikipedia.org/wiki/Hesse_normal_form

    Distance from the origin O to the line E calculated with the Hesse normal form. Normal vector in red, line in green, point O shown in blue. In analytic geometry, the Hesse normal form (named after Otto Hesse) is an equation used to describe a line in the Euclidean plane, a plane in Euclidean space, or a hyperplane in higher dimensions.

  9. Planar graph - Wikipedia

    en.wikipedia.org/wiki/Planar_graph

    A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points. Every graph that can be drawn on a plane can be ...