Search results
Results from the WOW.Com Content Network
Reviewer Narayanan Narayanan recommends the book to any puzzle aficionado, or to anyone who wants to develop their powers of algorithmic thinking. [4] Reviewer Martin Griffiths suggests another group of readers, schoolteachers and university instructors in search of examples to illustrate the power of algorithmic thinking. [ 3 ]
The history of computational thinking as a concept dates back at least to the 1950s but most ideas are much older. [6] [3] Computational thinking involves ideas like abstraction, data representation, and logically organizing data, which are also prevalent in other kinds of thinking, such as scientific thinking, engineering thinking, systems thinking, design thinking, model-based thinking, and ...
Automated decision-making involves using data as input to be analyzed within a process, model, or algorithm or for learning and generating new models. [7] ADM systems may use and connect a wide range of data types and sources depending on the goals and contexts of the system, for example, sensor data for self-driving cars and robotics, identity data for security systems, demographic and ...
Regulation of algorithms, or algorithmic regulation, is the creation of laws, rules and public sector policies for promotion and regulation of algorithms, particularly in artificial intelligence and machine learning. [1] [2] [3] For the subset of AI algorithms, the term regulation of artificial intelligence is used.
Algorithmic management is a term used to describe certain labor management practices in the contemporary digital economy. In scholarly uses, the term was initially coined in 2015 by Min Kyung Lee, Daniel Kusbit, Evan Metsky, and Laura Dabbish to describe the managerial role played by algorithms on the Uber and Lyft platforms, [1] [2] but has since been taken up by other scholars to describe ...
Edmond de Belamy, an artwork generated by a generative adversarial network. Computational creativity (also known as artificial creativity, mechanical creativity, creative computing or creative computation) is a multidisciplinary endeavour that is located at the intersection of the fields of artificial intelligence, cognitive psychology, philosophy, and the arts (e.g., computational art as part ...
[9] [10] The last two examples form the subtopic image analysis of pattern recognition that deals with digital images as input to pattern recognition systems. [11] [12] Optical character recognition is an example of the application of a pattern classifier. The method of signing one's name was captured with stylus and overlay starting in 1990.
The algorithm selection problem is mainly solved with machine learning techniques. By representing the problem instances by numerical features , algorithm selection can be seen as a multi-class classification problem by learning a mapping for a given instance .