Search results
Results from the WOW.Com Content Network
The atmosphere of Jupiter is classified into four layers, by increasing altitude: the troposphere, stratosphere, thermosphere and exosphere. Unlike the Earth's atmosphere, Jupiter's lacks a mesosphere. [14] Jupiter does not have a solid surface, and the lowest atmospheric layer, the troposphere, smoothly transitions into the planet's fluid ...
Jupiter's helium abundance is 80% of the Sun's, similar to Saturn's composition. The ongoing contraction of Jupiter's interior generates more heat than the planet receives from the Sun. Its internal structure is believed to consist of an outer mantle of fluid metallic hydrogen and a diffuse inner core of
The internal structure of the inner planets. The internal structure of the outer planets. A planetary core consists of the innermost layers of a planet. [1] Cores may be entirely liquid, or a mixture of solid and liquid layers as is the case in the Earth. [2]
Jupiter may be best known as the planetary titan of our solar system with a comparatively small red mark — that still dwarfs the entirety of Earth — and rows of striations going from pole to pole.
A diagram of Jupiter showing a model of the planet's interior, with a rocky core overlaid by a deep layer of liquid metallic hydrogen (shown as magenta) and an outer layer predominantly of molecular hydrogen. Jupiter's true interior composition is uncertain.
Jupiter radiation. Jupiter's magnetosphere is a complex structure comprising a bow shock, magnetosheath, magnetopause, magnetotail, magnetodisk, and other components.The magnetic field around Jupiter emanates from a number of different sources, including fluid circulation at the planet's core (the internal field), electrical currents in the plasma surrounding Jupiter and the currents flowing ...
The cooling causes the internal pressure to drop, and the star or planet shrinks as a result. This compression, in turn, heats the core of the star/planet. This mechanism is evident on Jupiter and Saturn and on brown dwarfs whose central temperatures are not high enough to undergo hydrogen fusion. It is estimated that Jupiter radiates more ...
Munk & Wunsch (1998) estimated that Earth experiences 3.7 TW (0.0073 W/m 2) of tidal heating, of which 95% (3.5 TW or 0.0069 W/m 2) is associated with ocean tides and 5% (0.2 TW or 0.0004 W/m 2) is associated with Earth tides, with 3.2 TW being due to tidal interactions with the Moon and 0.5 TW being due to tidal interactions with the Sun. [3] Egbert & Ray (2001) confirmed that overall ...