Search results
Results from the WOW.Com Content Network
A black hole with the mass of a car would have a diameter of about 10 −24 m and take a nanosecond to evaporate, during which time it would briefly have a luminosity of more than 200 times that of the Sun. Lower-mass black holes are expected to evaporate even faster; for example, a black hole of mass 1 TeV/c 2 would take less than 10 −88 ...
While in a non-rotating black hole the singularity occurs at a single point in the model coordinates, called a "point singularity", in a rotating black hole, also known as a Kerr black hole, the singularity occurs on a ring (a circular line), known as a "ring singularity". Such a singularity may also theoretically become a wormhole. [18]
A rotating black hole is a black hole that possesses angular momentum. In particular, it rotates about one of its axes of symmetry. All celestial objects – planets, stars , galaxies, black holes – spin. [1] [2] [3] The boundaries of a Kerr black hole relevant to astrophysics. Note that there are no physical "surfaces" as such.
In the "raisin bread model", one imagines a loaf of raisin bread expanding in an oven. The loaf (space) expands as a whole, but the raisins (gravitationally bound objects) do not expand; they merely move farther away from each other. This analogy has the disadvantage of wrongly implying that the expansion has a center and an edge.
Scientists say microscopic black holes could explain the elusive "dark matter" that makes up a quarter of all matter in the universe. But can it be proven?
Researchers have identified a black hole that appears to have come into being through the collapse of the core of a large star in its death throes, but without the usual blast. Black holes have ...
For black holes, this manifests as Hawking radiation, and the larger question of how the black hole possesses a temperature is part of the topic of black hole thermodynamics. For accelerating particles, this manifests as the Unruh effect, which causes space around the particle to appear to be filled with matter and radiation.
The no-hair theorem (which is a hypothesis) states that all stationary black hole solutions of the Einstein–Maxwell equations of gravitation and electromagnetism in general relativity can be completely characterized by only three independent externally observable classical parameters: mass, angular momentum, and electric charge.