Search results
Results from the WOW.Com Content Network
The spectral series of hydrogen, on a logarithmic scale. The emission spectrum of atomic hydrogen has been divided into a number of spectral series, with wavelengths given by the Rydberg formula. These observed spectral lines are due to the electron making transitions between two energy levels in an atom.
Louis Carl Heinrich Friedrich Paschen (22 January 1865 – 25 February 1947) was a German physicist, known for his work on electrical discharges. He is also known for the Paschen series , a series of hydrogen spectral lines in the infrared region that he first observed in 1908.
Paschen's law is an equation that gives the breakdown voltage, that is, the voltage necessary to start a discharge or electric arc, between two electrodes in a gas as a function of pressure and gap length. [2] [3] It is named after Friedrich Paschen who discovered it empirically in 1889. [4]
Paschen-Back effect, the splitting of atomic energy levels in the presence of a strong magnetic field Paschen series, a Hydrogen spectral series in the infrared band Paschen's law , an equation that gives the breakdown voltage, that is the voltage necessary to start a discharge or electric arc, between two electrodes in a gas as a function of ...
An ubiquitous example of a hydrogen bond is found between water molecules. In a discrete water molecule, there are two hydrogen atoms and one oxygen atom. The simplest case is a pair of water molecules with one hydrogen bond between them, which is called the water dimer and is often used as a model system. When more molecules are present, as is ...
The spectrum of ice is similar to that of liquid water, with peak maxima at 3400 cm −1 (2.941 μm), 3220 cm −1 (3.105 μm) and 1620 cm −1 (6.17 μm) [14] In both liquid water and ice clusters, low-frequency vibrations occur, which involve the stretching (TS) or bending (TB) of intermolecular hydrogen bonds (O–H•••O).
The water dimer consists of two water molecules loosely bound by a hydrogen bond. It is the smallest water cluster . Because it is the simplest model system for studying hydrogen bonding in water, it has been the target of many theoretical [ 1 ] [ 2 ] [ 3 ] (and later experimental) studies that it has been called a "theoretical Guinea pig".
2 O) is a simple triatomic bent molecule with C 2v molecular symmetry and bond angle of 104.5° between the central oxygen atom and the hydrogen atoms. Despite being one of the simplest triatomic molecules , its chemical bonding scheme is nonetheless complex as many of its bonding properties such as bond angle , ionization energy , and ...