enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heterogeneous water oxidation - Wikipedia

    en.wikipedia.org/wiki/Heterogeneous_Water_Oxidation

    Water splitting can be done at higher pH values as well however the standard potentials will vary according to the Nernst equation and therefore shift by -59 mV for each pH unit increase. However, the total cell potential (difference between oxidation and reduction half cell potentials) will remain 1.23 V.

  3. Linear sweep voltammetry - Wikipedia

    en.wikipedia.org/wiki/Linear_sweep_voltammetry

    E s is the reduction potential of A (if the electrolyte and the electrode are in their standard conditions, then this potential is a standard reduction potential). As E approaches E s, the current on the surface increases, and when E = E s, the concentration of A equals that of the oxidized/reduced A at the surface ([A] = [A −]). [4]

  4. Aqion - Wikipedia

    en.wikipedia.org/wiki/Aqion

    In order to flatten the steep learning curve aqion provides an introduction to fundamental water-related topics in form of a "chemical pocket calculator". Second. The program mediates between two terminological concepts: The calculations are performed in the "scientific realm" of thermodynamics (activities, speciation, log K values, ionic ...

  5. Nernst equation - Wikipedia

    en.wikipedia.org/wiki/Nernst_equation

    In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...

  6. Electrolysis of water - Wikipedia

    en.wikipedia.org/wiki/Electrolysis_of_water

    Pure water has a charge carrier density similar to semiconductors [12] [page needed] since it has a low autoionization, K w = 1.0×10 −14 at room temperature and thus pure water conducts current poorly, 0.055 μS/cm. [13] Unless a large potential is applied to increase the autoionization of water, electrolysis of pure water proceeds slowly ...

  7. Table of standard reduction potentials for half-reactions ...

    en.wikipedia.org/wiki/Table_of_standard...

    The values below are standard apparent reduction potentials (E°') for electro-biochemical half-reactions measured at 25 °C, 1 atmosphere and a pH of 7 in aqueous solution. [1] [2] The actual physiological potential depends on the ratio of the reduced (Red) and oxidized (Ox) forms according to the Nernst equation and the thermal voltage.

  8. Reducing agent - Wikipedia

    en.wikipedia.org/wiki/Reducing_agent

    Hydrogen (whose reduction potential is 0.0) acts as an oxidizing agent because it accepts an electron donation from the reducing agent lithium (whose reduction potential is -3.04), which causes Li to be oxidized and hydrogen to be reduced. H 2(g) + F 2(g) → 2 HF (g) [b]

  9. Chemical oxygen demand - Wikipedia

    en.wikipedia.org/wiki/Chemical_oxygen_demand

    In the process of oxidizing the organic substances found in the water sample, potassium dichromate is reduced (since in all redox reactions, one reagent is oxidized and the other is reduced), forming Cr 3+. The amount of Cr 3+ is determined after oxidization is complete and is used as an indirect measure of the organic contents of the water sample.