Search results
Results from the WOW.Com Content Network
Dissolution by most gases is exothermic. That is, when a gas dissolves in a liquid solvent, energy is released as heat, warming both the system (i.e. the solution) and the surroundings. The temperature of the solution eventually decreases to match that of the surroundings.
An endothermic process may be a chemical process, such as dissolving ammonium nitrate (NH 4 NO 3) in water (H 2 O), or a physical process, such as the melting of ice cubes. [5] The opposite of an endothermic process is an exothermic process, one that releases or "gives out" energy, usually in the form of heat and sometimes as electrical energy. [1]
The opposite of an exothermic process is an endothermic process, one that absorbs energy, usually in the form of heat. [2] The concept is frequently applied in the physical sciences to chemical reactions where chemical bond energy is converted to thermal energy (heat).
[2] A strongly exothermic reaction will usually also be exergonic because ΔH⚬ makes a major contribution to ΔG⚬. Most of the spectacular chemical reactions that are demonstrated in classrooms are exothermic and exergonic. The opposite is an endothermic reaction, which usually takes up heat and is driven by an entropy increase in the system.
The reaction is usually endothermic as heat is required to break chemical bonds in the compound undergoing decomposition. If decomposition is sufficiently exothermic, a positive feedback loop is created producing thermal runaway and possibly an explosion or other chemical reaction. Thermal decomposition is a chemical reaction where heat is a ...
Endothermic reactions absorb heat, while exothermic reactions release heat. Thermochemistry coalesces the concepts of thermodynamics with the concept of energy in the form of chemical bonds. Thermochemistry coalesces the concepts of thermodynamics with the concept of energy in the form of chemical bonds.
The English word hell does not appear in the Greek New Testament; instead one of three words is used: the Greek words Tartarus or Hades, or the Hebrew word Gehinnom. In the Septuagint and New Testament, the authors used the Greek term Hades for the Hebrew Sheol, but often with Jewish rather than Greek concepts in mind.
Another example involving thermochemical equations is that when methane gas is combusted, heat is released, making the reaction exothermic. In the process, 890.4 kJ of heat is released per mole of reactants, so the heat is written as a product of the reaction.