Search results
Results from the WOW.Com Content Network
Depiction of smooth muscle contraction. Muscle contraction is the activation of tension-generating sites within muscle cells. [1] [2] In physiology, muscle contraction does not necessarily mean muscle shortening because muscle tension can be produced without changes in muscle length, such as when holding something heavy in the same position. [1]
An impulse from a nerve cell causes calcium release and brings about a single, short muscle contraction called a muscle twitch. If there is a problem at the neuromuscular junction, a very prolonged contraction may occur, such as the muscle contractions that result from tetanus. Also, a loss of function at the junction can produce paralysis. [5]
To elicit muscle contraction, the muscle is stimulated by a series of electrical pulses delivered by an electrode to stimulate either the motor nerve or the muscle tissue itself. Simultaneously, a computer-controlled servo motor in the testing apparatus oscillates the muscle while measuring the force generated by the stimulated muscle.
There are several mechanisms directly linked to the terminal cisternae which facilitate excitation-contraction coupling. When excitation of the membrane arrives at the T-tubule nearest the muscle fiber, a dihydropyridine channel (DHP channel) is activated. [2] This is similar to a voltage-gated calcium channel, but is not actually an ionotropic ...
A myograph recording from a pendulum myograph after an induced contraction. The upper line (m) represents the curve traced by the end of the myograph lever in connection with a muscle after stimulation of the muscle by a single induction-shock. A myograph is any device used to measure the force produced by a muscle when under contraction. [1]
It allows the motor neuron to transmit a signal to the muscle fiber, causing muscle contraction. [2] Muscles require innervation to function—and even just to maintain muscle tone, avoiding atrophy. In the neuromuscular system, nerves from the central nervous system and the peripheral nervous system are linked and work together with muscles. [3]
The sliding filament theory explains the mechanism of muscle contraction based on muscle proteins that slide past each other to generate movement. [1] According to the sliding filament theory, the myosin ( thick filaments ) of muscle fibers slide past the actin ( thin filaments ) during muscle contraction, while the two groups of filaments ...
It also initiates muscle contraction in skeletal and cardiac muscles and muscle relaxation in smooth muscles. Ca 2+ sparks are important in physiology as they show how Ca 2+ can be used at a subcellular level, to signal both local changes, known as local control, [3] as well as whole cell changes.