enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Weak interaction - Wikipedia

    en.wikipedia.org/wiki/Weak_interaction

    The weak interaction does not produce bound states, nor does it involve binding energy – something that gravity does on an astronomical scale, the electromagnetic force does at the molecular and atomic levels, and the strong nuclear force does only at the subatomic level, inside of nuclei.

  3. Nuclear force - Wikipedia

    en.wikipedia.org/wiki/Nuclear_force

    With this potential nucleons can become bound with a negative "binding energy". The nuclear force (or nucleon–nucleon interaction, residual strong force, or, historically, strong nuclear force) is a force that acts between hadrons, most commonly observed between protons and neutrons of atoms. Neutrons and protons, both nucleons, are affected ...

  4. Fundamental interaction - Wikipedia

    en.wikipedia.org/wiki/Fundamental_interaction

    The weak interaction or weak nuclear force is responsible for some nuclear phenomena such as beta decay. Electromagnetism and the weak force are now understood to be two aspects of a unified electroweak interaction — this discovery was the first step toward the unified theory known as the Standard Model .

  5. WISArD experiment - Wikipedia

    en.wikipedia.org/wiki/WISArD_experiment

    The Weak Interaction Studies with 32Ar Decay (WISArD) experiment is a permanent experimental setup located in the ISOLDE facility, at CERN. The purpose of the experiment is to investigate the weak interaction by looking for beta-delayed protons emitted from a nucleus . [ 1 ]

  6. W and Z bosons - Wikipedia

    en.wikipedia.org/wiki/W_and_Z_bosons

    Following the success of quantum electrodynamics in the 1950s, attempts were undertaken to formulate a similar theory of the weak nuclear force. This culminated around 1968 in a unified theory of electromagnetism and weak interactions by Sheldon Glashow, Steven Weinberg, and Abdus Salam, for which they shared the 1979 Nobel Prize in Physics.

  7. Electroweak interaction - Wikipedia

    en.wikipedia.org/wiki/Electroweak_interaction

    In particle physics, the electroweak interaction or electroweak force is the unified description of two of the fundamental interactions of nature: electromagnetism (electromagnetic interaction) and the weak interaction. Although these two forces appear very different at everyday low energies, the theory models them as two different aspects of ...

  8. Charged current - Wikipedia

    en.wikipedia.org/wiki/Charged_current

    Charged current interactions are the most easily detected class of weak interactions. The weak force is best known for mediating nuclear decay. It has very short range, but is the only force (apart from gravity) to interact with neutrinos. The weak force is communicated via the W and Z exchange particles.

  9. Weak charge - Wikipedia

    en.wikipedia.org/wiki/Weak_charge

    In nuclear physics and atomic physics, weak charge, or rarely neutral weak charge, refers to the Standard Model weak interaction coupling of a particle to the Z boson.For example, for any given nuclear isotope, the total weak charge is approximately −0.99 per neutron, and +0.07 per proton. [1]