Search results
Results from the WOW.Com Content Network
According to a study a human at 70 kg (150 lb) requires about 60 watts to walk at 5 km/h (3.1 mph) on firm and flat ground, [6] while according to a calculator at kreuzotter.de the same person and power output on an ordinary bicycle will travel at 15 km/h (9.3 mph), [7] so in these conditions the energy expenditure of cycling is about one-third ...
MyWhoosh is an indoor cycling platform that offers free rides and training plans. ... (based on watts per kilogram or kilometers per hour). ... but some verification of things like weight and ...
[6] [7] By convention, 1 MET is considered equivalent to the consumption of 3.5 ml O 2 ·kg −1 ·min −1 (or 3.5 ml of oxygen per kilogram of body mass per minute) and is roughly equivalent to the expenditure of 1 kcal per kilogram of body weight per hour. This value was first experimentally derived from the resting oxygen consumption of a ...
Normal human metabolism produces heat at a basal metabolic rate of around 80 watts. [1] During a bicycle race, an elite cyclist can produce around 440 watts of mechanical power over an hour and track cyclists in short bursts over 2500 watts; modern racing bicycles have greater than 95% mechanical efficiency. An adult of good fitness is more ...
Regularly moving around, such as shifting your weight back-to-front or moving up and down from your drop bars, can help. 4. Stop: Comparing Indoor Power to Outdoor Power
VAM is a parameter used in cycling as a measure of fitness and speed; it is useful for relatively objective comparisons of performances and estimating a rider's power output per kilogram of body mass, which is one of the most important qualities of a cyclist who competes in stage races and other mountainous [citation needed] events.
A 2021 study found that the treadmill is the most effective cardio machine for weight loss. A trainer explains why—and reveals the best treadmill workouts.
A typical turbocharged V8 diesel engine might have an engine power of 250 kW (340 hp) and a mass of 380 kg (840 lb), [1] giving it a power-to-weight ratio of 0.65 kW/kg (0.40 hp/lb). Examples of high power-to-weight ratios can often be found in turbines.