Search results
Results from the WOW.Com Content Network
Diagram of turning vehicle. On wheeled vehicles with the common type of front wheel steering (i.e. one, two or even four wheels at the front capable of steering), the vehicle's turning diameter measures the minimum space needed to turn the vehicle around while the steering is set to its maximum displacement from the central 'straight ahead' position - i.e. either extreme left or right.
A steering ratio of x:y means that a turn of the steering wheel x degree(s) causes the wheel(s) to turn y degree(s). In most passenger cars , the ratio is between 12:1 and 20:1. For example, if one and a half turns of the steering wheel, 540 degrees, causes the inner & outer wheel to turn 35 and 30 degrees respectively, due to Ackermann ...
Intersecting the axes of the front wheels on this line as well requires that the inside front wheel be turned, when steering, through a greater angle than the outside wheel. [2] Rather than the preceding "turntable" steering, where both front wheels turned around a common pivot, each wheel gained its own pivot, close to its own hub.
Camber is the angle which the vertical axis of the wheel makes with the vertical axis of the vehicle. This angle is very important for the cornering performance of the vehicles. Generally, a Camber around 0.5-2 degrees is given on the vehicles. Depending upon wheel orientation, Camber can be of three types. 1. Positive Camber
The term scrub radius derives from the fact that either in the positive or negative mode, the tire does not turn on its centerline (it scrubs the road in a turn) and due to the increased friction, more effort is needed to turn the wheel. Large positive values of scrub radius, 4 inches/100 mm or so, were used in cars for many years.
The 1960 Milliken MX1 Camber Car has a large negative camber. Camber angle is one of the angles made by the wheels of a vehicle; specifically, it is the angle between the vertical axis of a wheel and the vertical axis of the vehicle when viewed from the front or rear.
When a wheel is set up to have some camber angle, the interaction between the tire and road surface causes the wheel to tend to want to roll in a curve, as if it were part of a conical surface (camber thrust). This tendency to turn increases the rolling resistance as well as increasing tire wear. A small degree of toe (toe-out for negative ...
The ratios between the slip angles of the front and rear axles (a function of the slip angles of the front and rear tires respectively) will determine the vehicle's behavior in a given turn. If the ratio of front to rear slip angles is greater than 1:1, the vehicle will tend to understeer, while a ratio of less than 1:1 will produce oversteer. [2]