Search results
Results from the WOW.Com Content Network
The name boson was coined by Paul Dirac [3] [4] to commemorate the contribution of Satyendra Nath Bose, an Indian physicist. When Bose was a reader (later professor) at the University of Dhaka, Bengal (now in Bangladesh), [5] [6] he and Albert Einstein developed the theory characterising such particles, now known as Bose–Einstein statistics and Bose–Einstein condensate.
Note that this "high temperature" approximation does not distinguish between fermions and bosons. The discrepancy in the partition functions of distinguishable and indistinguishable particles was known as far back as the 19th century, before the advent of quantum mechanics. It leads to a difficulty known as the Gibbs paradox.
The W bosons are known for their mediation in nuclear decay: The W − converts a neutron into a proton then decays into an electron and electron-antineutrino pair. The Z 0 does not convert particle flavor or charges, but rather changes momentum; it is the only mechanism for elastically scattering neutrinos.
The number of bosons within a composite particle made up of simple particles bound with a potential has no effect on whether it is a boson or a fermion. Fermionic or bosonic behavior of a composite particle (or system) is only seen at large (compared to size of the system) distances.
bosons necessary to explain beta decay, but also a new Z boson that had never been observed. The fact that the W and Z bosons have mass while photons are massless was a major obstacle in developing electroweak theory. These particles are accurately described by an SU(2) gauge theory, but the bosons
By contrast, eukaryotic cells are larger and thus contain much more protein. For instance, yeast cells have been estimated to contain about 50 million proteins and human cells on the order of 1 to 3 billion. [35] The concentration of individual protein copies ranges from a few molecules per cell up to 20 million. [36]
These are referred to as metamorphic proteins. [5] Finally other proteins appear not to adopt any stable conformation and are referred to as intrinsically disordered. [6] Proteins frequently contain two or more domains, each have a different fold separated by intrinsically disordered regions. These are referred to as multi-domain proteins.
Biomolecular structure is the intricate folded, three-dimensional shape that is formed by a molecule of protein, DNA, or RNA, and that is important to its function.The structure of these molecules may be considered at any of several length scales ranging from the level of individual atoms to the relationships among entire protein subunits.