enow.com Web Search

  1. Ads

    related to: lines and angles problems 5th
  2. education.com has been visited by 100K+ users in the past month

    This site is a teacher's paradise! - The Bender Bunch

    • Lesson Plans

      Engage your students with our

      detailed lesson plans for K-8.

    • Digital Games

      Turn study time into an adventure

      with fun challenges & characters.

Search results

  1. Results from the WOW.Com Content Network
  2. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    If the sum of the interior angles α and β is less than 180°, the two straight lines, produced indefinitely, meet on that side. In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's Elements, is a distinctive axiom in Euclidean geometry. It states that, in two-dimensional geometry:

  3. Arrangement of lines - Wikipedia

    en.wikipedia.org/wiki/Arrangement_of_lines

    An approximation algorithm is known, [43] and the problem may be solved efficiently for lines that fall into a small number of parallel families (as is typical for urban street grids), [44] but the general problem remains open. [45]

  4. Special cases of Apollonius' problem - Wikipedia

    en.wikipedia.org/wiki/Special_cases_of_Apollonius...

    To generate the line that bisects the angle between two given rays [clarification needed] requires a circle of arbitrary radius centered on the intersection point P of the two lines (2). The intersection points of this circle with the two given lines (5) are T1 and T2. Two circles of the same radius, centered on T1 and T2, intersect at points P ...

  5. Langley's Adventitious Angles - Wikipedia

    en.wikipedia.org/wiki/Langley's_Adventitious_Angles

    adventitious quadrangles problem. A quadrilateral such as BCEF is called an adventitious quadrangle when the angles between its diagonals and sides are all rational angles, angles that give rational numbers when measured in degrees or other units for which the whole circle is a rational number. Numerous adventitious quadrangles beyond the one ...

  6. Playfair's axiom - Wikipedia

    en.wikipedia.org/wiki/Playfair's_axiom

    The easiest way to show this is using the Euclidean theorem (equivalent to the fifth postulate) that states that the angles of a triangle sum to two right angles. Given a line and a point P not on that line, construct a line, t, perpendicular to the given one through the point P, and then a perpendicular to this perpendicular at the point P.

  7. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    The corresponding angles formed by a transversal property, used by W. D. Cooley in his 1860 text, The Elements of Geometry, simplified and explained requires a proof of the fact that if one transversal meets a pair of lines in congruent corresponding angles then all transversals must do so. Again, a new axiom is needed to justify this statement.

  8. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    In a cyclic quadrilateral, four line segments, each perpendicular to one side and passing through the opposite side's midpoint, are concurrent. [3]: p.131, [5] These line segments are called the maltitudes, [6] which is an abbreviation for midpoint altitude.

  9. Hilbert's axioms - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_axioms

    Congruence, two binary relations, one linking line segments and one linking angles, each denoted by an infix ≅. Line segments, angles, and triangles may each be defined in terms of points and straight lines, using the relations of betweenness and containment.

  1. Ads

    related to: lines and angles problems 5th