enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematics of paper folding - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_paper_folding

    The fold-and-cut problem asks what shapes can be obtained by folding a piece of paper flat, and making a single straight complete cut. The solution, known as the fold-and-cut theorem, states that any shape with straight sides can be obtained. A practical problem is how to fold a map so that it may be manipulated with minimal effort or movements.

  3. Fold-and-cut theorem - Wikipedia

    en.wikipedia.org/wiki/Fold-and-cut_theorem

    The fold-and-cut theorem states that any shape with straight sides can be cut from a single (idealized) sheet of paper by folding it flat and making a single straight complete cut. [1] Such shapes include polygons, which may be concave, shapes with holes, and collections of such shapes (i.e. the regions need not be connected ).

  4. Map folding - Wikipedia

    en.wikipedia.org/wiki/Map_folding

    In the mathematics of paper folding, map folding and stamp folding are two problems of counting the number of ways that a piece of paper can be folded. In the stamp folding problem, the paper is a strip of stamps with creases between them, and the folds must lie on the creases. In the map folding problem, the paper is a map, divided by creases ...

  5. Geometric Folding Algorithms - Wikipedia

    en.wikipedia.org/wiki/Geometric_Folding_Algorithms

    Geometric Folding Algorithms: Linkages, Origami, Polyhedra is a monograph on the mathematics and computational geometry of mechanical linkages, paper folding, and polyhedral nets, by Erik Demaine and Joseph O'Rourke. It was published in 2007 by Cambridge University Press (ISBN 978-0-521-85757-4).

  6. Huzita–Hatori axioms - Wikipedia

    en.wikipedia.org/wiki/Huzita–Hatori_axioms

    The Huzita–Justin axioms or Huzita–Hatori axioms are a set of rules related to the mathematical principles of origami, describing the operations that can be made when folding a piece of paper. The axioms assume that the operations are completed on a plane (i.e. a perfect piece of paper), and that all folds are linear.

  7. Dragon curve - Wikipedia

    en.wikipedia.org/wiki/Dragon_curve

    Heighway dragon curve. A dragon curve is any member of a family of self-similar fractal curves, which can be approximated by recursive methods such as Lindenmayer systems.The dragon curve is probably most commonly thought of as the shape that is generated from repeatedly folding a strip of paper in half, although there are other curves that are called dragon curves that are generated differently.

  8. Geometric Exercises in Paper Folding - Wikipedia

    en.wikipedia.org/wiki/Geometric_Exercises_in...

    Geometric Exercises in Paper Folding is a book on the mathematics of paper folding. It was written by Indian mathematician T. Sundara Row, first published in India in 1893, and later republished in many other editions. Its topics include paper constructions for regular polygons, symmetry, and algebraic curves. According to the historian of ...

  9. Napkin folding problem - Wikipedia

    en.wikipedia.org/wiki/Napkin_folding_problem

    The napkin folding problem is a problem in geometry and the mathematics of paper folding that explores whether folding a square or a rectangular napkin can increase its perimeter. The problem is known under several names, including the Margulis napkin problem , suggesting it is due to Grigory Margulis , and the Arnold's rouble problem referring ...