enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Blum Blum Shub - Wikipedia

    en.wikipedia.org/wiki/Blum_Blum_Shub

    Blum Blum Shub takes the form + =, where M = pq is the product of two large primes p and q.At each step of the algorithm, some output is derived from x n+1; the output is commonly either the bit parity of x n+1 or one or more of the least significant bits of x n+1.

  3. CLs method (particle physics) - Wikipedia

    en.wikipedia.org/wiki/CLs_method_(particle_physics)

    Let X be a random sample from a probability distribution with a real non-negative parameter [,). A CLs upper limit for the parameter θ, with confidence level ′, is a statistic (i.e., observable random variable) () which has the property:

  4. Python syntax and semantics - Wikipedia

    en.wikipedia.org/wiki/Python_syntax_and_semantics

    Numeric literals in Python are of the normal sort, e.g. 0, -1, 3.4, 3.5e-8. Python has arbitrary-length integers and automatically increases their storage size as necessary. Prior to Python 3, there were two kinds of integral numbers: traditional fixed size integers and "long" integers of arbitrary size.

  5. SymPy - Wikipedia

    en.wikipedia.org/wiki/SymPy

    SymPy is an open-source Python library for symbolic computation. It provides computer algebra capabilities either as a standalone application, as a library to other applications, or live on the web as SymPy Live [2] or SymPy Gamma. [3] SymPy is simple to install and to inspect because it is written entirely in Python with few dependencies.

  6. Reservoir sampling - Wikipedia

    en.wikipedia.org/wiki/Reservoir_sampling

    Reservoir sampling is a family of randomized algorithms for choosing a simple random sample, without replacement, of k items from a population of unknown size n in a single pass over the items.

  7. Shannon's source coding theorem - Wikipedia

    en.wikipedia.org/wiki/Shannon's_source_coding...

    In information theory, the source coding theorem (Shannon 1948) [2] informally states that (MacKay 2003, pg. 81, [3] Cover 2006, Chapter 5 [4]): N i.i.d. random variables each with entropy H(X) can be compressed into more than N H(X) bits with negligible risk of information loss, as N → ∞; but conversely, if they are compressed into fewer than N H(X) bits it is virtually certain that ...

  8. Rapidly exploring random tree - Wikipedia

    en.wikipedia.org/wiki/Rapidly_exploring_random_tree

    A rapidly exploring random tree (RRT) is an algorithm designed to efficiently search nonconvex, high-dimensional spaces by randomly building a space-filling tree. The tree is constructed incrementally from samples drawn randomly from the search space and is inherently biased to grow towards large unsearched areas of the problem.

  9. SciPy - Wikipedia

    en.wikipedia.org/wiki/SciPy

    SciPy (pronounced / ˈ s aɪ p aɪ / "sigh pie" [3]) is a free and open-source Python library used for scientific computing and technical computing. [4]SciPy contains modules for optimization, linear algebra, integration, interpolation, special functions, FFT, signal and image processing, ODE solvers and other tasks common in science and engineering.