Search results
Results from the WOW.Com Content Network
For finitely repeated games, if a stage game has only one unique Nash equilibrium, the subgame perfect equilibrium is to play without considering past actions, treating the current subgame as a one-shot game. An example of this is a finitely repeated Prisoner's dilemma game. The Prisoner's dilemma gets its name from a situation that contains ...
The blue equilibrium is not subgame perfect because player two makes a non-credible threat at 2(2) to be unkind (U). The Nash equilibrium is a superset of the subgame perfect Nash equilibrium. The subgame perfect equilibrium in addition to the Nash equilibrium requires that the strategy also is a Nash equilibrium in every subgame of that game.
A perfect-subgame equilibrium occurs when there are Nash Equilibria in every subgame, that players have no incentive to deviate from. [2] In both subgames, it benefits the responder to accept the offer. So, the second set of Nash equilibria above is not subgame perfect: the responder can choose a better strategy for one of the subgames.
A Nash equilibrium is a strategy profile (a strategy profile specifies a strategy for every player, e.g. in the above prisoners' dilemma game (cooperate, defect) specifies that prisoner 1 plays cooperate and prisoner 2 plays defect) in which every strategy played by every agent (agent i) is a best response to every other strategy played by all the other opponents (agents j for every j≠i) .
If a node is contained in the subgame then so are all of its successors. If a node in a particular information set is in the subgame then all members of that information set belong to the subgame. It is a notion used in the solution concept of subgame perfect Nash equilibrium, a refinement of the Nash equilibrium that eliminates non-credible ...
Strict stationary subgame-perfect equilibria: [6] An outcome is attainable in strict-stationary-subgame-perfect-equilibrium, if for every player the outcome is strictly better than the player's minimax outcome (note that this is not an "if-and-only-if" result). To achieve subgame-perfect equilibrium with the overtaking criterion, it is required ...
The one-shot deviation principle (also known as single-deviation property [1]) is the principle of optimality of dynamic programming applied to game theory. [2] It says that a strategy profile of a finite multi-stage extensive-form game with observed actions is a subgame perfect equilibrium (SPE) if and only if there exist no profitable single deviation for each subgame and every player.
Each of the two stages has two Nash Equilibria: which are (A, a), (B, b), (X, x), and (Y, y). If the complete contingent strategy of Player 1 matches Player 2 (i.e. AXXXX, axxxx), it will be a Nash Equilibrium. There are 32 such combinations in this multi-stage game. Additionally, all of these equilibria are subgame-perfect.