Search results
Results from the WOW.Com Content Network
The tangent line to a point on a differentiable curve can also be thought of as a tangent line approximation, the graph of the affine function that best approximates the original function at the given point. [3] Similarly, the tangent plane to a surface at a given point is the plane that "just touches" the
Trigonometric functions and their reciprocals on the unit circle. All of the right-angled triangles are similar, i.e. the ratios between their corresponding sides are the same.
A tangent line t to a circle C intersects the circle at a single point T. For comparison, secant lines intersect a circle at two points, whereas another line may not intersect a circle at all. This property of tangent lines is preserved under many geometrical transformations, such as scalings, rotation, translations, inversions, and map ...
In trigonometry, the law of tangents or tangent rule [1] is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides. In Figure 1, a , b , and c are the lengths of the three sides of the triangle, and α , β , and γ are the angles opposite those three respective sides.
Illustration of tangential and normal components of a vector to a surface. In mathematics, given a vector at a point on a curve, that vector can be decomposed uniquely as a sum of two vectors, one tangent to the curve, called the tangential component of the vector, and another one perpendicular to the curve, called the normal component of the vector.
Abu al-Wafa had sine tables in 0.25° increments, to 8 decimal places of accuracy, and accurate tables of tangent values. [16] He also made important innovations in spherical trigonometry [17] [18] [19] The Persian polymath Nasir al-Din al-Tusi has been described as the creator of trigonometry as a mathematical discipline in its own right.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in R n. More generally, tangent vectors are elements of a tangent space of a differentiable manifold. Tangent vectors can also be described in terms of ...