Ad
related to: mars tectonically inactive star trek discovery
Search results
Results from the WOW.Com Content Network
Today, Mars is believed to be largely tectonically inactive. However, observational evidence and its interpretation suggests that this was not the case further back in Mars's geological history. At the scale of the whole planet, two large scale physiographic features are apparent on the surface. The first is that the northern hemisphere of the ...
Mars is much less tectonically active than Earth, and marsquakes are unlikely to have provided seismic waves of the required magnitude. [10] Most sizable craters on Mars date to the Late Heavy Bombardment , 4.1 to 3.8 billion years ago (the Noachian period), and are older than the landslide deposits in Valles Marineris.
Star Trek: Discovery is an American science fiction television series created by Bryan Fuller and Alex Kurtzman for the streaming service CBS All Access ...
Generalised geological map of Mars [1] Mars as seen by the Hubble Space Telescope. The geology of Mars is the scientific study of the surface, crust, and interior of the planet Mars. It emphasizes the composition, structure, history, and physical processes that shape the planet. It is analogous to the field of terrestrial geology.
Scientists have wanted to find out which of these processes created grey hematite on Mars since 1998, when Mars Global Surveyor spotted large concentrations of the mineral near the planet's equator (seen in the right picture). This discovery provided the first mineral evidence that Mars' history may have included water.
The silica discovery is still one of the most important findings by the Spirit rover, which operated on Mars from 2004 to 2011. ... Since landing on Mars on August 5, 2012, the Curiosity rover has ...
Many places on Mars show rocks arranged in layers. Rock can form layers in a variety of ways. Volcanoes, wind, or water can produce layers. [8] A detailed discussion of layering with many Martian examples can be found in Sedimentary Geology of Mars. [9] Layers can be hardened by the action of groundwater.
[8] [9] Mars and particularly Venus have evidence of prior resurfacing events, but appear to be tectonically quiescent today. Geodynamic inferences about Solar System planets have been extrapolated to exoplanets in order to constrain what kind of geodynamic regimes can be expected given a set of physical criterion such as planetary radius ...
Ad
related to: mars tectonically inactive star trek discovery