enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photon energy - Wikipedia

    en.wikipedia.org/wiki/Photon_energy

    This equation is known as the Planck relation. Additionally, using equation f = c/λ, = where E is the photon's energy; λ is the photon's wavelength; c is the speed of light in vacuum; h is the Planck constant; The photon energy at 1 Hz is equal to 6.626 070 15 × 10 −34 J, which is equal to 4.135 667 697 × 10 −15 eV.

  3. Planck relation - Wikipedia

    en.wikipedia.org/wiki/Planck_relation

    The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.

  4. Photon - Wikipedia

    en.wikipedia.org/wiki/Photon

    In some cases, two energy transitions can be coupled so that, as one system absorbs a photon, another nearby system "steals" its energy and re-emits a photon of a different frequency. This is the basis of fluorescence resonance energy transfer , a technique that is used in molecular biology to study the interaction of suitable proteins .

  5. Planck constant - Wikipedia

    en.wikipedia.org/wiki/Planck_constant

    An amount of light more typical in everyday experience (though much larger than the smallest amount perceivable by the human eye) is the energy of one mole of photons; its energy can be computed by multiplying the photon energy by the Avogadro constant, N A = 6.022 140 76 × 10 23 mol −1, [36] with the result of 216 kJ, about the food energy ...

  6. Electromagnetic radiation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_radiation

    The energy of an individual photon is quantized and proportional to frequency according to Planck's equation E = hf, where E is the energy per photon, f is the frequency of the photon, and h is the Planck constant. Thus, higher frequency photons have more energy.

  7. Einstein (unit) - Wikipedia

    en.wikipedia.org/wiki/Einstein_(unit)

    The einstein (symbol E) is an obsolete unit with two conflicting definitions. It was originally defined as the energy in one mole of photons (6.022 × 10 23 photons). [1] [2] Because energy is inversely proportional to wavelength, the unit is frequency dependent.

  8. Compton wavelength - Wikipedia

    en.wikipedia.org/wiki/Compton_wavelength

    The Compton wavelength for this particle is the wavelength of a photon of the same energy. For photons of frequency f , energy is given by E = h f = h c λ = m c 2 , {\displaystyle E=hf={\frac {hc}{\lambda }}=mc^{2},} which yields the Compton wavelength formula if solved for λ .

  9. Pair production - Wikipedia

    en.wikipedia.org/wiki/Pair_production

    The photon's energy is converted to particle mass in accordance with Einstein's equation, E = mc 2; where E is energy, m is mass and c is the speed of light. The photon must have higher energy than the sum of the rest mass energies of an electron and positron (2 × 511 keV = 1.022 MeV, resulting in a photon wavelength of 1.2132 pm ) for the ...