Search results
Results from the WOW.Com Content Network
An acid–alkali reaction is a special case of an acid–base reaction, where the base used is also an alkali. When an acid reacts with an alkali salt (a metal hydroxide), the product is a metal salt and water. Acid–alkali reactions are also neutralization reactions. In general, acid–alkali reactions can be simplified to
Animation of a strong acid–strong base neutralization titration (using phenolphthalein). The equivalence point is marked in red. In chemistry, neutralization or neutralisation (see spelling differences) is a chemical reaction in which acid and a base react with an equivalent quantity of each other. In a reaction in water, neutralization ...
A strong base is a basic chemical compound that can remove a proton (H +) from (or deprotonate) a molecule of even a very weak acid (such as water) in an acid–base reaction. Common examples of strong bases include hydroxides of alkali metals and alkaline earth metals, like NaOH and Ca(OH) 2, respectively. Due to their low solubility, some ...
The W term represents a constant energy contribution for acid–base reaction such as the cleavage of a dimeric acid or base. The equation predicts reversal of acids and base strengths. The graphical presentations of the equation show that there is no single order of Lewis base strengths or Lewis acid strengths. [15] [16] and that single ...
A basic oxide, also called a base anhydride (meaning "base without water"), is usually formed in the reaction of oxygen with metals, especially alkali (group 1) and alkaline earth (group 2) metals. Both of these groups form ionic oxides that dissolve in water to form basic solutions of the corresponding metal hydroxide: Alkali metals (Group 1)
The enthalpy change for this reaction is -57.62 kJ/mol at 25 °C. For weak acids or bases, the heat of neutralization is pH-dependent. [1] In the absence of any added mineral acid or alkali, some heat is required for complete dissociation. The total heat evolved during neutralization will be smaller.
In acid catalysis and base catalysis, a chemical reaction is catalyzed by an acid or a base. By Brønsted–Lowry acid–base theory, the acid is the proton (hydrogen ion, H +) donor and the base is the proton acceptor. Typical reactions catalyzed by proton transfer are esterifications and aldol reactions.
[5] [6] [7] In the Brønsted–Lowry theory acids and bases are defined by the way they react with each other, generalising them. This is best illustrated by an equilibrium equation. acid + base ⇌ conjugate base + conjugate acid. With an acid, HA, the equation can be written symbolically as: