Search results
Results from the WOW.Com Content Network
Generative artificial intelligence (generative AI, GenAI, [1] or GAI) is a subset of artificial intelligence that uses generative models to produce text, images, videos, or other forms of data. [ 2 ] [ 3 ] [ 4 ] These models learn the underlying patterns and structures of their training data and use them to produce new data [ 5 ] [ 6 ] based on ...
Prompt engineering is the process of structuring or crafting an instruction in order to produce the best possible output from a generative artificial intelligence (AI) model. [ 1 ] A prompt is natural language text describing the task that an AI should perform. [ 2 ]
This is a documentation subpage for Template:Generative AI editnotice. It may contain usage information, categories and other content that is not part of the original template page. This is an editnotice template for use on articles or talk pages about generative artificial intelligence , in order to deter users from mistakenly entering prompts ...
Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.
This template's initial visibility currently defaults to autocollapse, meaning that if there is another collapsible item on the page (a navbox, sidebar, or table with the collapsible attribute), it is hidden apart from its title bar; if not, it is fully visible. To change this template's initial visibility, the |state= parameter may be used:
Retrieval-augmented generation (RAG) is a technique that grants generative artificial intelligence models information retrieval capabilities. It modifies interactions with a large language model (LLM) so that the model responds to user queries with reference to a specified set of documents, using this information to augment information drawn from its own vast, static training data.
Regardless of precise definition, the terminology is constitutional because a generative model can be used to "generate" random instances , either of an observation and target (,), or of an observation x given a target value y, [2] while a discriminative model or discriminative classifier (without a model) can be used to "discriminate" the ...
The Stanford Institute for Human-Centered Artificial Intelligence's (HAI) Center for Research on Foundation Models (CRFM) coined the term "foundation model" in August 2021 [16] to mean "any model that is trained on broad data (generally using self-supervision at scale) that can be adapted (e.g., fine-tuned) to a wide range of downstream tasks". [17]