Search results
Results from the WOW.Com Content Network
Evidence indicates that what Newton meant by "indigo" and "blue" does not correspond to the modern meanings of those color words. Comparing Newton's observation of prismatic colors with a color image of the visible light spectrum shows that "indigo" corresponds to what is today called blue, whereas his "blue" corresponds to cyan. [14] [15] [16]
On the screen of a color television or computer, white is produced by mixing the primary colors of light: red, green and blue at full intensity, a process called additive mixing (see image above). White light can be fabricated using light with only two wavelengths, for instance by mixing light from a red and cyan laser or yellow and blue lasers.
Additive color mixing: projecting primary color lights on a white surface shows secondary colors where two overlap; the combination of all three primaries in equal intensities makes white. To form a color with RGB, three light beams (one red, one green, and one blue) must be superimposed (for example by emission from a black screen or by ...
Dispersive prisms are used to break up light into its constituent spectral colors because the refractive index depends on wavelength; the white light entering the prism is a mixture of different wavelengths, each of which gets bent slightly differently. Blue light is slowed more than red light and will therefore be bent more than red light.
Generally, longer wavelengths (red) undergo a smaller deviation than shorter wavelengths (blue). The dispersion of white light into colors by a prism led Sir Isaac Newton to conclude that white light consisted of a mixture of different colors. Triangular prisms are the most common type of dispersive prism.
If the light is not a pure white source (the case of nearly all forms of artificial lighting), the resulting spectrum will appear a slightly different color. Red paint, viewed under blue light, may appear black. Red paint is red because it scatters only the red components of the spectrum. If red paint is illuminated by blue light, it will be ...
When the slide is viewed or projected by passing white light through these stacked layers, the visible wavelengths are filtered correspondingly with the reversed colors. For example, blue light will result in no yellow dye formation in the blue-sensitive layer, but cyan and magenta dye will form in the red- and green-sensitive layers.
The perception of "white" is formed by the entire spectrum of visible light, or by mixing colors of just a few wavelengths in animals with few types of color receptors. In humans, white light can be perceived by combining wavelengths such as red, green, and blue, or just a pair of complementary colors such as blue and yellow. [4]