enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polytropic process - Wikipedia

    en.wikipedia.org/wiki/Polytropic_process

    A polytropic process is a thermodynamic process that obeys the relation: = where p is the pressure , V is volume , n is the polytropic index , and C is a constant. The polytropic process equation describes expansion and compression processes which include heat transfer.

  3. Isentropic process - Wikipedia

    en.wikipedia.org/wiki/Isentropic_process

    In fluid dynamics, an isentropic flow is a fluid flow that is both adiabatic and reversible. That is, no heat is added to the flow, and no energy transformations occur due to friction or dissipative effects. For an isentropic flow of a perfect gas, several relations can be derived to define the pressure, density and temperature along a streamline.

  4. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension General heat/thermal capacity C = / J⋅K −1: ML 2 T −2 Θ −1: Heat capacity (isobaric)

  5. Thermodynamic process - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_process

    An isentropic process is customarily defined as an idealized quasi-static reversible adiabatic process, of transfer of energy as work. Otherwise, for a constant-entropy process, if work is done irreversibly, heat transfer is necessary, so that the process is not adiabatic, and an accurate artificial control mechanism is necessary; such is ...

  6. Temperature–entropy diagram - Wikipedia

    en.wikipedia.org/wiki/Temperature–entropy_diagram

    An isentropic process is depicted as a vertical line on a T–s diagram, whereas an isothermal process is a horizontal line. [2] Example T–s diagram for a thermodynamic cycle taking place between a hot reservoir (T H) and a cold reservoir (T C). For reversible processes, such as those found in the Carnot cycle:

  7. Heat capacity ratio - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity_ratio

    In thermal physics and thermodynamics, the heat capacity ratio, also known as the adiabatic index, the ratio of specific heats, or Laplace's coefficient, is the ratio of the heat capacity at constant pressure (C P) to heat capacity at constant volume (C V).

  8. Thermodynamic cycle - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_cycle

    The Carnot cycle is a cycle composed of the totally reversible processes of isentropic compression and expansion and isothermal heat addition and rejection. The thermal efficiency of a Carnot cycle depends only on the absolute temperatures of the two reservoirs in which heat transfer takes place, and for a power cycle is:

  9. Polytrope - Wikipedia

    en.wikipedia.org/wiki/Polytrope

    The normalized density as a function of scale length for a wide range of polytropic indices. In astrophysics, a polytrope refers to a solution of the Lane–Emden equation in which the pressure depends upon the density in the form = (+) / = + /, where P is pressure, ρ is density and K is a constant of proportionality. [1]