Search results
Results from the WOW.Com Content Network
A bijection with the sums to n is to replace 1 with 0 and 2 with 11. The number of binary strings of length n without an even number of consecutive 0 s or 1 s is 2F n. For example, out of the 16 binary strings of length 4, there are 2F 4 = 6 without an even number of consecutive 0 s or 1 s—they are 0001, 0111, 0101, 1000, 1010, 1110. There is ...
The summation of an explicit sequence is denoted as a succession of additions. For example, summation of [1, 2, 4, 2] is denoted 1 + 2 + 4 + 2, and results in 9, that is, 1 + 2 + 4 + 2 = 9. Because addition is associative and commutative, there is no need for parentheses, and the result is the same irrespective of the order of the summands ...
2 + (1 + 3) = (2 + 1) + 3 with segmented rods. Addition is associative, which means that when three or more numbers are added together, the order of operations does not change the result. As an example, should the expression a + b + c be defined to mean (a + b) + c or a + (b + c)? Given that addition is associative, the choice of definition is ...
For example, consider the sum: 2 + 5 + 8 + 11 + 14 = 40 {\displaystyle 2+5+8+11+14=40} This sum can be found quickly by taking the number n of terms being added (here 5), multiplying by the sum of the first and last number in the progression (here 2 + 14 = 16), and dividing by 2:
Express each term of the final sequence y 0, y 1, y 2, ... as the sum of up to two terms of these intermediate sequences: y 0 = x 0, y 1 = z 0, y 2 = z 0 + x 2, y 3 = w 1, etc. After the first value, each successive number y i is either copied from a position half as far through the w sequence, or is the previous value added to one value in the ...
Such a sum is called the Zeckendorf representation of N. The Fibonacci coding of N can be derived from its Zeckendorf representation. For example, the Zeckendorf representation of 64 is 64 = 55 + 8 + 1. There are other ways of representing 64 as the sum of Fibonacci numbers 64 = 55 + 5 + 3 + 1 64 = 34 + 21 + 8 + 1 64 = 34 + 21 + 5 + 3 + 1
If a representation has an odd number of terms, x/y is the middle term, while if it has an even number of terms and its minimum value is m it may be extended in a unique way to a longer sequence with the same sum and an odd number of terms, by including the 2m − 1 numbers −(m − 1), −(m − 2), ..., −1, 0, 1, ..., m − 2, m − 1.
For example, if there were an even integer N = p + 1 larger than 4, for p a prime, that could not be expressed as the sum of two primes in the modern sense, then it would be a counterexample to the modern version of the third conjecture (without being a counterexample to the original version).